
123

Ivan I. Ivanov
Marten van Sinderen
Frank Leymann
Tony Shan (Eds.)

Second International Conference, CLOSER 2012
Porto, Portugal, April 2012
Revised Selected Papers

Cloud Computing
and Services Science

Communications in Computer and Information Science 367

Communications
in Computer and Information Science 367

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, India

Dominik Ślęzak
University of Warsaw and Infobright, Poland

Takashi Washio
Osaka University, Japan

Xiaokang Yang
Shanghai Jiao Tong University, China

Ivan I. Ivanov Marten van Sinderen
Frank Leymann Tony Shan (Eds.)

Cloud Computing
and Services Science
Second International Conference, CLOSER 2012
Porto, Portugal, April 18-21, 2012
Revised Selected Papers

13

Volume Editors

Ivan I. Ivanov
State University of New York
Empire State College
Long Island Center, NY, USA
E-mail: ivan.ivanov@esc.edu

Marten van Sinderen
University of Twente
Enschede, The Netherlands
E-mail: m.j.vansinderen@utwente.nl

Frank Leymann
University of Stuttgart
Institute of Architecture of Application Systems
Stuttgart, Germany
E-mail: leymann@iaas.uni-stuttgart.de

Tony Shan
CTS, Charlotte, NC, USA
E-mail: tonyshan@live.com

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-319-04518-4 e-ISBN 978-3-319-04519-1
DOI 10.1007/978-3-319-04519-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013957788

CR Subject Classification (1998): D.2, K.6, C.2, H.2, H.4

© Springer International Publishing Switzerland 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This book includes extended and revised versions of a set of selected papers
from CLOSER 2012 (the Second International Conference on Cloud Comput-
ing and Services Science), held in Porto, Portugal, in 2012, and organized by
the Institute for Systems and Technologies of Information, Control and Com-
munication (INSTICC), in cooperation with the ACM Special Interest Group
on Management Information Systems (ACM SIGMIS), EuroCloud, and Euro-
Cloud Portugal. The conference was also technically co-sponsored by SINTEF
and mOSAIC.

The purpose of the CLOSER series of conferences is to bring together re-
searchers, engineers, and practitioners interested in the emerging area of cloud
computing. The conference has four main tracks, namely, “Cloud Computing
Fundamentals,” “Services Science Foundation for Cloud Computing,” “Cloud
Computing Platforms and Applications,” and “Cloud Computing Enabling Tech-
nology.”

In the last few years, cloud computing has expanded steadily, both
horizontally across industries and vertically in organizations’ information tech-
nology stack, for raw computing and storage, databases and system’s utilities,
e-collaborative tools, and enterprise applications. Certainly cloud computing is
a phenomenon grasping businesses and professional communities’ attentiveness
in various important dimensions. Cloud computing development likewise creates
exciting challenges and opportunities for scholars, developers, and IT experts.
It is a thrilling journey driven by many agendas such as: cost cutbacks; better
utilization of existing IT infrastructures and systems; and designing, developing,
and delivering dynamic mobile and interactive computational services based on
advanced provisional models. The immense economic demands in the last sev-
eral years, in conjunction with the immediate reduction of upfront capital and
operational costs when cloud-based services are employed, increase the speed
and the scale of cloud computing creations and adoptions.

While information and communication technology developments have en-
abled the shift from manufacturing to service industries, this did not coincide
with the emerging of an academic discipline that provided training and con-
ducted research into the management and engineering of services from an in-
tegrated perspective. Only a few years ago, the need for such a discipline was
identified, and services science was established as a blending of, among others,
computer science, engineering, management, and social science. Today the ser-
vices sector already accounts for up to 80% of the economic activity in many
developed countries. Services science can ground the development of “moving to
the cloud” with a solid understanding of new cloud-based services, leading to
knowledge on how they should be designed, deployed, and managed, and how
they affect economy and society. With this linking, problems of diverse nature

VI Preface

can be identified and addressed in early stages, and opportunities can be more
effectively exploited.

CLOSER 2012 received 145 paper submissions from all continents. From
these, 27 papers were published and presented as full papers, 44 were accepted
for short presentation, and another 20 for poster presentation. These numbers,
leading to a full-paper acceptance ratio of 19% and an oral paper acceptance
ratio of 49%, show the intention of preserving a high-quality forum for this and
next editions of the conference.

The papers included in this book were selected from those with the best re-
views taking also into account the quality of their presentation at the conference,
as assessed by the session chairs. We hope that you find these papers interesting,
and we trust they represent a helpful reference for all those who need to address
any of the research areas mentioned above.

We wish to thank all those who supported and helped to organize the confer-
ence. On behalf of the conference Organizing Committee, we would like to thank
the authors, whose work mostly contributed to a very successful conference, and
to the members of the Program Committee, whose expertise and diligence were
instrumental in ensuring the quality of final contributions.

Last but not least, we would like to thank Springer for their collaboration in
getting this book to print.

September 2013 Ivan Ivanov
Marten van Sinderen

Frank Leymann
Tony Shan

Organization

Conference Chair

Tony Shan Keane Inc., USA

Program Co-chairs

Frank Leymann University of Stuttgart, Germany
Ivan Ivanov SUNY Empire State College, USA
Marten van Sinderen University of Twente, The Netherlands

Organizing Committee

Marina Carvalho INSTICC, Portugal
Helder Coelhas INSTICC, Portugal
Patŕıcia Duarte INSTICC, Portugal
Bruno Encarnação INSTICC, Portugal
Liliana Medina INSTICC, Portugal
Carla Mota INSTICC, Portugal
Raquel Pedrosa INSTICC, Portugal
Vitor Pedrosa INSTICC, Portugal
Cláudia Pinto INSTICC, Portugal
Susana Ribeiro INSTICC, Portugal
José Varela INSTICC, Portugal
Pedro Varela INSTICC, Portugal

Program Committee

Marco Aiello, The Netherlands
Jörn Altmann, Korea, Republic of
Cosimo Anglano, Italy
Joseph Antony, Australia
Claudio Ardagna, Italy
Liliana Ardissono, Italy
Steven Van Assche, Belgium
Muhammad Atif, Australia
Benjamin Aziz, UK
Amelia Badica, Romania
Remi Badonnel, France
Janaka Balasooriya, USA

Simona Bernardi, Spain
Karin Bernsmed, Norway
Nik Bessis, UK
Sami Bhiri, Ireland
Stefano Bocconi, The Netherlands
Ivona Brandic, Austria
Francisco Brasileiro, Brazil
Iris Braun, Germany
Andrey Brito, Brazil
Ralf Bruns, Germany
Anna Brunstrom, Sweden
Rebecca Bulander, Germany

VIII Organization

Massimo Cafaro, Italy
Manuel Isidoro Capel-Tuñón, Spain
Miriam Capretz, Canada
Niklas Carlsson, Sweden
Eddy Caron, France
Humberto Castejon, Norway
Davide Cherubini, Ireland
Augusto Ciuffoletti, Italy
Daniela Barreiro Claro, Brazil
Christine Collet, France
António Miguel Rosado da Cruz,

Portugal
Tommaso Cucinotta, Italy
Eduardo Huedo Cuesta, Spain
Edward Curry, Ireland
Florian Daniel, Italy
Stephen Dawson, UK
Benjamin Depardon, France
Frédéric Desprez, France
Khalil Drira, France
Erik Elmroth, Sweden
Hany F. ElYamany, Egypt
Robert van Engelen, USA
Florian Feldhaus, Germany
Stefano Ferretti, Italy
Chiara Francalanci, Italy
Ganna Frankova, Italy
Roberto Furnari, Italy
Walid Gaaloul, France
Georgina Galizo, Germany
Maria Ganzha, Poland
David Genest, France
Fekade Getahun, Ethiopia
Chirine Ghedira, France
Hamada Ghenniwa, Canada
Vittorio Ghini, Italy
Lee Gillam, UK
Katja Gilly, Spain
Anna Goy, Italy
Patrizia Grifoni, Italy
Stephan Groß, Germany
Adnene Guabtni, Australia
Dirk Habich, Germany
Carmem Satie Hara, Brazil
Manfred Hauswirth, Ireland

Frans Henskens, Australia
Elisa Heymann, Spain
Marianne Huchard, France
Sorin M. Iacob, The Netherlands
Ilian Ilkov, The Netherlands
Anca Daniela Ionita, Romania
Fuyuki Ishikawa, Japan
Hiroshi Ishikawa, Japan
Ivan Ivanov, USA
Martin Gilje Jaatun, Norway
Meiko Jensen, Germany
Yiming Ji, USA
Xiaolong Jin, China
Jose Fernando Rodrigues Jr., Brazil
Carlos Juiz, Spain
David R. Kaeli, USA
Gabor Kecskemeti, Hungary
Attila Kertesz, Hungary
Marouane Kessentini, USA
Cameron Kiddle, Canada
Claus-Peter Klas, Germany
Carsten Kleiner, Germany
Dzmitry Kliazovich, Luxembourg
Geir M. Køien, Norway
Dimitri Konstantas, Switzerland
George Kousiouris, Greece
László Kovács, Hungary
Diwakar Krishnamurthy, Canada
Dimosthenis Kyriazis, Greece
Alexander Lazovik, The Netherlands
Young Choon Lee, Australia
Miguel Leitão, Portugal
Frank Leymann, Germany
Keqin Li, USA
Kuan-ching Li, Taiwan
Donghui Lin, Japan
Ramiro Liscano, Canada
Marin Litoiu, Canada
Xumin Liu, USA
Giorgia Lodi, Italy
Suksant Sae Lor, UK
Nikolaos Loutas, Greece
Simone Ludwig, USA
Glenn Luecke, USA
Pierre Maret, France

Organization IX

Moreno Marzolla, Italy
Ioannis Mavridis, Greece
Michele Mazzucco, Estonia
Richard McClatchey, UK
Alba Melo, Brazil
Jose Ramon Gonzalez de Mendivil,

Spain
José Merseguer, Spain
Barton P. Miller, USA
Raffaela Mirandola, Italy
Owen Molloy, Ireland
Rubén Santiago Montero, Spain
Reagan Moore, USA
Kamran Munir, UK
Vı́ctor Méndez Muñoz, Spain
Wolfgang E. Nagel, Germany
Hidemoto Nakada, Japan
Philippe Navaux, Brazil
Lee Newcombe, UK
Hamid Reza Motahari Nezhad, USA
Jean-Marc Nicod, France
Mara Nikolaidou, Greece
Karsten Oberle, Germany
Enn Ounapuu, Estonia
Alexander Paar, Germany
Federica Paganelli, Italy
Sara Paiva, Portugal
Dhabaleswar K. Panda, USA
Fabio Panzieri, Italy
David Paul, Australia
Siani Pearson, UK
Jih-Kwon Peir, USA
Dana Petcu, Romania
Dorina Petriu, Canada
Giovanna Petrone, Italy
Maria Chiara Pettenati, Italy
Agostino Poggi, Italy
Wolfgang Prinz, Germany
Juha Puustjärvi, Finland
Li Qi, China
Judy Qiu, USA
Rajendra Raj, USA
Arkalgud Ramaprasad, USA
Manuel Ramos-Cabrer, Spain
Andrew Rau-Chaplin, Canada

Norbert Ritter, Germany
Tarćısio da Rocha, Brazil
Luis Rodero-Merino, Spain
Chunming Rong, Norway
Pedro Frosi Rosa, Brazil
Jonathan Rouzaud-Cornabas, France
Marek Rusinkiewicz, USA
Elena Sanchez-Nielsen, Spain
Alexander Schill, Germany
Lutz Schubert, Germany
Giovanni Semeraro, Italy
Carlos Serrao, Portugal
Marten van Sinderen, The Netherlands
Cosmin Stoica Spahiu, Romania
Josef Spillner, Germany
Ralf Steinmetz, Germany
Heinz Stockinger, Switzerland
Philipp Strube, Germany
Yasuyuki Tahara, Japan
Yehia Taher, The Netherlands
Domenico Talia, Italy
Samir Tata, France
Cedric Tedeschi, France
Joe Tekli, Lebanon
Maria Beatriz Toledo, Brazil
Orazio Tomarchio, Italy
Johan Tordsson, Sweden
Paolo Trunfio, Italy
Hong-Linh Truong, Austria
Eddy Truyen, Belgium
Konstantinos Tserpes, Greece
Francesco Tusa, Italy
Astrid Undheim, Norway
Athina Vakali, Greece
Luis M. Vaquero, UK
Fabio Luciano Verdi, Brazil
Massimo Villari, Italy
Sabrina de Capitani Di Vimercati,

Italy
Bruno Volckaert, Belgium
Hiroshi Wada, Australia
Chen Wang, Australia
Martijn Warnier, The Netherlands
Dennis Wegener, Germany
Erik Wilde, USA

X Organization

Marco Winckler, France
Jan-Jan Wu, Taiwan
George Yee, Canada

Ustun Yildiz, USA
Zhifeng Yun, USA

Auxiliary Reviewers

Suhair Alshehri, USA
Viktoriya Degeler, The Netherlands
Ando Emerencia, The Netherlands
Daniel Espling, Sweden
Elena Gómez-Mart́ınez, Spain
Juan S. Gonzalez, Spain
Christophe Gravier, France
Leo Iaquinta, Italy
Wubin Li, Sweden
Therese Libourel, France
Toni Mastelic, Austria

Giuseppe Di Modica, Italy
Giuliano Andrea Pagani,

The Netherlands
Tommaso Pecorella, Italy
Pasqualina Potena, Italy
Aurora Pozo, Brazil
Ismael Bouassida Rodriguez, France
Ricardo J. Rodŕıguez, Spain
Johann Stan, France
Sylvain Vauttier, France
Shuying Wang, Canada

Invited Speakers

Arlindo Dias IBM, Portugal
Helen Karatza Aristotle University of Thessaloniki, Greece
Frédéric Desprez Laboratoire de L’Informatique du Parallélisme

- LIP/Institut National de Recherche en
Informatique et en Automatique – Inria,
France

Fabrizio Gagliardi Microsoft Research Switzerland

Table of Contents

Invited Paper

Adding Virtualization Capabilities to the Grid’5000 Testbed 3
Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier,
Frédéric Desprez, Emmanuel Jeannot, Emmanuel Jeanvoine,
Adrien Lèbre, David Margery, Nicolas Niclausse, Lucas Nussbaum,
Olivier Richard, Christian Perez, Flavien Quesnel, Cyril Rohr, and
Luc Sarzyniec

Papers

Improving Cost-Efficiency through Failure-Aware Server Management
and Scheduling in Cloud . 23

Laiping Zhao and Kouichi Sakurai

Designing an IPv6-Oriented Datacenter with IPv4-IPv6 Translation
Technology for Future Datacenter Operation . 39

Keiichi Shima, Wataru Ishida, and Yuji Sekiya

Realization of a Functional Domain within a Cloud 54
Jonathan Eccles and George Loizou

Mining Facebook Activity to Discover Social Ties: Towards a
Social-Sensitive Ecosystem . 71

Sandra Servia-Rodŕıguez, Rebeca P. Dı́az-Redondo,
Ana Fernández-Vilas, and José J. Pazos-Arias

Secure Biometric-Based Authentication for Cloud Computing 86
Kok-Seng Wong and Myung Ho Kim

An Efficient and Performance-Aware Big Data Storage System 102
Yang Li, Li Guo, and Yike Guo

Towards Cost Aspects in Cloud Architectures . 117
Uwe Hohenstein, Reto Krummenacher, Ludwig Mittermeier, and
Sebastian Dippl

On-Demand Business Rule Management Framework for SaaS
Application . 135

Xiuwei Zhang, Keqing He, Jian Wang, Chong Wang, and Zheng Li

Making XML Signatures Immune to XML Signature Wrapping
Attacks . 151

Christian Mainka, Meiko Jensen, Luigi Lo Iacono, and Jörg Schwenk

XII Table of Contents

Automated Non-repudiable Cloud Resource Allocation 168
Kassidy Clark, Martijn Warnier, and Frances M.T. Brazier

The IVI Cloud Computing Life Cycle . 183
Gerard Conway and Edward Curry

Performance Assessment of Web Services in the STEP Framework 200
Miguel L. Pardal, Joana P. Pardal, and José Alves Marques

CAP-Oriented Design for Cloud-Native Applications 215
Vasilios Andrikopoulos, Steve Strauch, Christoph Fehling, and
Frank Leymann

SLA-Oriented Security Provisioning for Cloud Computing 230
Massimo Ficco and Massimiliano Rak

Cloud Storage and Bioinformatics in a Private Cloud Deployment:
Lessons for Data Intensive Research . 245

Victor Chang, Robert John Walters, and Gary Wills

Author Index . 265

Invited Paper

Adding Virtualization Capabilities to the Grid’5000
Testbed�

Daniel Balouek1, Alexandra Carpen Amarie1, Ghislain Charrier1, Frédéric Desprez1,
Emmanuel Jeannot1, Emmanuel Jeanvoine1, Adrien Lèbre2, David Margery1,

Nicolas Niclausse1, Lucas Nussbaum3, Olivier Richard4, Christian Perez1,
Flavien Quesnel2, Cyril Rohr1, and Luc Sarzyniec3

1INRIA, France
2Ecole des Mines de Nantes, France

3Université de Lorraine, France
4Université de Grenoble, France

FirstName.LastName@inria.fr, FirstName.LastName@mines-nantes.fr,
FirstName.LastName@univ-lorraine.fr, FirstName.LastName@imag.fr

Abstract. Almost ten years after its premises, the Grid’5000 testbed has be-
come one of the most complete testbed for designing or evaluating large-scale
distributed systems. Initially dedicated to the study of High Performance Com-
puting, the infrastructure has evolved to address wider concerns related to Desk-
top Computing, the Internet of Services and more recently the Cloud Computing
paradigm. This paper present recent improvements of the Grid’5000 software and
services stack to support large-scale experiments using virtualization technolo-
gies as building blocks. Such contributions include the deployment of customized
software environments, the reservation of dedicated network domain and the pos-
sibility to isolate them from the others, and the automation of experiments with
a REST API. We illustrate the interest of these contributions by describing three
different use-cases of large-scale experiments on the Grid’5000 testbed. The first
one leverages virtual machines to conduct larger experiments spread over 4000
peers. The second one describes the deployment of 10000 KVM instances over 4
Grid’5000 sites. Finally, the last use case introduces a one-click deployment tool
to easily deploy major IaaS solutions. The conclusion highlights some important
challenges of Grid’5000 related to the use of OpenFlow and to the management
of applications dealing with tremendous amount of data.

Keywords: Distributed Systems, Large-Scale Testbed, Virtualization, Cloud
Computing, Experiments.

1 Introduction

The evolution of technology allows larger and highly distributed systems to be built,
which provide new capabilities, in terms of applications as well as in terms of
� The Grid’5000 experimental testbed and all development actions are supervised and financed

by the INRIA ALADDIN framework with support from CNRS, RENATER, and several Uni-
versities as well as other funding bodies (see https://www.grid5000.fr). Grid’5000 experiments
are partially supported by the INRIA large scale initiative Hemera. The IaaS deployment utility
is a particular action developed with the support of the EIT ICT Labs.

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 3–20, 2013.
c© Springer International Publishing Switzerland 2013

4 D. Balouek et al.

infrastructures like peer-to-peer systems, Grids, and more recently (federations of)
Cloud platforms. Such large scale distributed and parallel systems raise specific re-
search issues and computer science, as other sciences, needs instruments to validate
theoretical research results as well as software developments. Although simulation and
emulation are generally used to get a glance of the behavior of new algorithms, they
use over-simplified models in order to reduce their execution time and thus cannot be
accurate enough. Leveraging a scientific instrument to perform actual experiments is a
undeniable advantage. However conducting experiments on real environments is still
too often a challenge for researchers, students, and practitioners: first, because of the
unavailability of dedicated resources but second also because of the inability to create
controlled experimental conditions, and to deal with the so large variability of software
requirements. Started in 2003 under the initiative of the French ministry of Research,
the Grid’5000 testbed is a scientific instrument for the study of large scale parallel and
distributed systems. With the aim of providing a highly reconfigurable, controllable
and monitorable experimental platform [14], Grid’5000 was solid enough to attract
more than 600 users and led to a large number of research results and publications.
Nowadays, Grid’5000 is internationally recognized and serves as a foundation for new
scale platforms, e.g. FutureGrid [17] in the USA. With almost ten years of background,
several members of its scientific or technical board are invited take part to different
working groups, events focusing on the design and the building of new experimental
testbeds [16,27] with the ultimate objective of improving the quality of experiments.

The Grid’5000 instrument is continuously evolving toward providing more flexibil-
ity, more control of both the electronic devices composing the infrastructure as well
as of the experiments running over. The scientific and technical boards carefully fol-
low the major trends and the latest innovations of distributed and parallel systems from
both hardware and software point of views. This enables to renew the infrastructure
while ensuring the delivering of a testbed that meets user-expectations. As an exam-
ple, one of the most important change of the last decade is the renewal of interest of
virtualization technologies. The virtual machine concept that enables to run any sys-
tem over any other one has radically changed the use of distributed systems, leading to
new large-scale platforms built upon shared data-centres and usually classified into the
new cloud-computing IaaS (Infrastructure-as-a-Service) paradigm. Indeed, in addition
to abstract the complexity of IT systems, the use of virtualization is motivated by the
fact that physical resources are usually under-used and that virtualization technologies
enable to consolidate them and thus improve the productivity of the whole platforms.

Considering that the current trend consists of ”virtualizing” all physical resources,
adding virtualization capabilities to Grid’5000 is obviously expected. From the end-
users point of view, the objective is twofold: first, it will enable to leverage virtualization
technologies to improve the quality of the experiments at a larger scale. Second, it will
enable to investigate new concerns related to the management of virtualized infrastruc-
tures. Indeed, despite of the tremendous progress in the virtualization area and the large
number of companies providing virtualized platforms for various users, several impor-
tant issues remain to be solved. Among them, Quality of Service (QoS), fault-tolerance,
energy management, and scalability are major ones. Extending the Grid’5000 software
and services stack to investigate such concerns is important for the community. The key

Adding Virtualization Capabilities to Grid’5000 Testbed 5

progress, beyond the state of the art, is to provide the user with an infrastructure where
each component can be virtualized. In addition to the system virtualization capabilities
provided by modern computers, Grid’5000 targets the virtualization of active network
equipments as well as storage facilities.

In this paper, we describe the latest contributions of the Grid’5000 software and
services stack to make large-scale experiments involving low level virtual technologies
up to full IaaS software stacks. Grid’5000 is one the very few platforms that allows
to conduct such experiments between multi-sites and in an isolated and reproductible
manner.

The reminder of this paper is structured as follows. In Section 2, we give an
overview of the Grid’5000 instrument. Section 3 describes the latest contributions of the
Grid’5000 software and service stack while Section 4 illustrates the use of such contri-
butions through discussing three use-cases. Other experimental testbeds are introduced
in Section 5. Finally, we discuss perspectives and conclude this article in Section 6.

2 Grid’5000 Overview

In 2003, several teams working around parallel and distributed systems designed a plat-
form to support experiment-driven research in parallel and distributed systems. This
platform, called Grid’5000 [14] and opened to users since 2005, was solid enough to
attract a large number of users. It has led to a large number of research results: 575 users
per year, more than 700 research papers, 600 different experiments, 24 ANR projects
and 10 European projects, 50 PhD, and the creation of startup companies as well.

Grid’5000 is located mainly in France (see Figure 1), with one operational site in
Luxembourg and a second site, not implementing the complete stack, in Porto Ale-
gre, Brazil. Grid’5000 provides a testbed supporting experiments on various types of
distributed systems (high-performance computing, grids, peer-to-peer systems, cloud
computing, and others), on all layers of the software stack. The core testbed currently
comprises 10 sites. Grid’5000 is composed of 26 clusters, 1,700 nodes, and 7,400 CPU
cores, with various generations of technology (Intel (60%), AMD (40%), CPUs from
one to 12 cores, Myrinet, Infiniband {S, D, Q}DR and 2 GPU clusters). A dedicated 10
Gbps backbone network is provided by RENATER (the French National Research and
Education Network). In order to prevent Grid’5000 machines from being the source of
a distributed denial of service, connections from Grid’5000 to the Internet are strictly
limited to a list of whitelisted data and software sources, updated on demand.

From the user point of view, Grid’5000 is a set of sites with the exact same soft-
ware environment. The driving idea is that users willing to face software heterogeneity
should add controlled heterogeneity themselves during their experiments. Three basic
workflows are supported when staging an experiment on Grid’5000: a web interface-
based workflow, an API-based workflow, and a shell-based workflow. These differ not
only in the interfaces used but also in the process they support.

The core steps identified to run an experiment are (1) finding and booking suitable
resources for the experiment and (2) deploying the experiment apparatus on the re-
sources. Finding suitable resources can be approached in two ways: either users browse
a description of the available resources and then make a booking, or they describe their

6 D. Balouek et al.

800 km

Bordeaux (154)
Grenoble (116)

Lille (100)

Luxembourg (22)

Lyon (79)

Nancy (236)

Reims (44)

Rennes (162)

Sophia (151)Toulouse (140)

Fig. 1. Grid’5000 sites and their number of nodes

needs to the system that will locate appropriate resources. We believe both approaches
should be supported, and therefore a machine-readable description of Grid’5000 is
available through the reference API. It can be browsed by using a web interface or
by running a program over the API. At the same time, the resource scheduler on each
site is fed with the resource properties so that a user can ask for resources describing the
required properties (e.g., 25 nodes connected to the same switch with at least 8 cores
and 32 GB of memory). Once matching resources are found, they can be reserved either
for exclusive access at a given time or for exclusive access when they become available.
In the latter case, a script is given at reservation time, as in classical batch scheduling.

Several tools are provided to facilitate experiments. Most of them were originally
developed specifically for Grid’5000. Grid’5000 users select and reserve resources with
the OAR batch scheduler [13,30]. Users can install their own system image on the nodes
(without any virtualization layer) using Kadeploy [18]. Experiments requiring network
isolation can use KaVLAN to reconfigure switches and isolate nodes from the test of
the testbed. Several monitoring tools (resource usage on nodes with Ganglia, energy
consumption) are also available. All tools can be accessed by a REST API to ease the
automation of experiments using scripts. The tools used to support the experiments over
Grid’5000 will be described in Section 3.

Different approaches to deploying the experimental apparatus are also supported. At
the infrastructure level users either use the preconfigured environment on nodes, called
the production environment, or they install their own environment. An environment
consists of a disk image to be copied on the node and of the path in the disk image
of the kernel to boot. This environment can be prepared in advance by modifying and
saving reference environments made available to users, or a reference environment can
be dynamically customized after it is deployed on the resources. The approach chosen

Adding Virtualization Capabilities to Grid’5000 Testbed 7

can affect the repeatability of the results. Therefore, choices concerning the experiment
testbed environment are left to the experimenters.

Whatever approach used for the first two steps described here, access to resources
(sites and nodes) is done through SSH. Each site has its own NFS server. This design
decision was taken to ensure that resources of a particular site can be used even when
the link to other sites is undergoing maintenance. In other words, the infrastructure does
not depend on a single site to stay operational—an important consideration because
maintenance events become frequent when 10 sites are operated.

3 A Software Stack to Support Experiments

This section describes four key Grid’5000 services that contribute to support virtual-
ization and Cloud experiments on Grid’5000. Kadeploy (Section 3.1) enables users
to deploy their software stacks of choice on the nodes. g5k-subnets (Section 3.2) and
KaVLAN (Section 3.3) provide two different ways to configure the network (respec-
tively by reserving IP address ranges, and by isolating an experiment from the rest
of the testbed using on-the-fly switches reconfiguration). Finally, the Grid’5000 REST
API (Section 3.4) uniformizes the access to those services that facilitate the automated
execution of experiments.

3.1 Providing Custom Experimental Environments with Kadeploy

On most clusters, users do not have the option of changing the operating system in-
stalled on nodes. This is a severe problem for experimentation, since experimenters
often need to perform experiments in many different contexts in order to extend the
scope of an experimental result by verifying that it is not limited to specific experimen-
tal conditions (specific kernel, library or compiler version, configuration, etc.).

Grid’5000 enables the deployment of custom software stacks (including the oper-
ating system) on bare hardware1. This allows users to perform experiments without
being bound to one particular Linux distribution or version, or even operating system.
Users could use their own modified Linux kernels to work on live migration or mem-
ory deduplication techniques, or even install FreeBSD or Solaris to evaluate the interest
of process containers available on those operating systems (such as FreeBSD Jails or
OpenSolaris Zones) for Cloud computing.

While it is common for Cloud infrastructures to provide the ability to deploy custom
OS images in virtual machines, Grid’5000 provides this feature on physical machines,
which brings two advantages. First, it avoids the overhead of the virtualization layer,
which can be a problem when doing experiments involving performance measurements.
While the overhead is extremely low for CPU-intensive workload, it can be much higher
for IO-intensive workloads. Second, it allows deployed environments to contain virtual
machines themselves, without requiring the use of nested virtualization (hypervisor in-
side a virtual machine), which is not supported very well by today’s hypervisors.

On Grid’5000, the installation of custom OS images on nodes is implemented using

1 This has been recently named as Hardware-as-a-Service.

8 D. Balouek et al.

the Kadeploy [18] cluster provisioning system, which has been developed in the con-
text of the Grid’5000 project. Kadeploy achieves efficient and scalable installation of
system images using advanced mechanisms (adaptative tree-based command execution
thanks to TakTuk [15]; chain-based image broadcast [18]). The deployment process is
controlled by an automata to handle the unavoidable errors (due to unreliable proto-
cols and hardware), and the corresponding retry policies. Thanks to those features, the
installation of a 1.5 GB image on 130 nodes takes less than 10 minutes. Additionally,
instead of restricting deployments to the system administrator, Kadeploy provides flex-
ible permissions management to allow users to start deployments on their own. This is
used on Grid’5000 to enable users to deploy their own deployment environments.

Grid’5000 users can provide their own deployment images, and install them on nodes
with no prior validation from the technical team. While minor problems have been
encountered (e.g. a FreeBSD network driver that was disabling – until the next reboot
– the IPMI implementation sharing the Ethernet port with the operating system), no
major problem has been encountered due to this policy. This is also an example of the
security policy that is deployed throughout Grid’5000. We focus on mitigating normal
user errors, and on checking users before giving them access to the testbed, but we
do not try much to fight malicious actions from users since this would often limit the
experimental capabilities of the testbed at an unacceptable level.

3.2 Network Reservation with g5k-subnets

Virtual machines used during experiments must be accommodated on the testbed’s net-
work. While it is sometimes possible to limit experiments to purely virtual networks
(inside one physical machine, or spanning several physical machines using e.g. Open
vSwitch), this would be a severe limitation. Additionally, Grid’5000 is composed of
several sites with routing between sites (Figure 1), and different users can run concur-
rent experiments on the same Grid’5000 site.

Therefore, techniques to reserve address ranges or to isolate an experiment from
the rest of the testbed are needed. Grid’5000 provides two such solutions: g5k-subnets
(described in this section) extends Grid’5000 resource reservation mechanism to allow
users to reserve IP ranges for their virtual machines; KaVLAN (presented in the next
section) reconfigures network switches so that an experiment is isolated from the rest
of the testbed.

The whole 10/8 subnet (10.0.0.0− 10.255.255.255) is dedicated to user virtual ma-
chines on Grid’5000. The first half (10.0 − 10.127) is used for KaVLAN, while the
second half (10.128− 10.255) is used by g5k-subnets. Since Grid’5000 sites are inter-
connected via L3 routing, the 10.128/9 network is divided into one /14 network per
site (218 = 262144 IP addresses per site). This /14 network per site is again divided,
with the last /16 network (216 = 65536 IP addresses) dedicated to attributing IP ad-
dresses over DHCP for machines in the 00:16:3E:XX:XX:XX MAC range (which
is the Xen reserved MAC range).

The last 3 ∗ 216 = 196608 IP addresses are allocated through reservation with
g5k-subnets. g5k-subnets is integrated in the Resource Management System used on
Grid’5000, OAR [30]. Users can reserve a set of network IP addresses (from /22 to a

Adding Virtualization Capabilities to Grid’5000 Testbed 9

/16) at the same time as nodes: the following command reserves two /22 ranges and 8
nodes:

oarsub -l slash 22=2+nodes=8 -I
Once a specific IP range has been allocated, users can retrieve it using a command-

line tool. Additional information, such as DNS servers, default gateway, broadcast ad-
dress, etc. is made available through this tool.

It is worth noting that g5k-subnets only manages the reservation of IP address ranges,
not of MAC addresses. Since the available MAC address range (47 bits, since one is
used to indicate multicast frames) is much larger than the available IP range (18 bits),
choosing MAC addresses at random does not result in significant chances of collision.
This strategy is also used by several Cloud software stacks.

Finally, g5k-subnets does not enforce the reservation. A malicious user could steal
IP addresses from a concurrent user. If a user requires stronger protection, the use of
KaVLAN is recommended.

3.3 Network Isolation with KaVLAN

In some cases, the reservation of IP ranges, as provided by g5k-subnets, is not suffi-
cient to satisfy the experimenters’ needs. Some experiments are either too sensitive to
external noise (coming from broadcasts, or from unsolicited connections), or too dis-
ruptive (e.g. when using network discovery protocols that rely on network broadcast).
A typical example in experiments involving virtualization is the installation of a DHCP
server to serve IP addresses to virtual machines. If not properly configured, it could start
answering DHCP requests from other nodes on the testbed. Such experiments cannot
be performed on the same network as other experiments, as they could compromise the
testbed’s infrastructure or other experiments, or be compromised themselves.

KaVLAN is a tool developed inside the Grid’5000 project that provides controlled
isolation of user experiments at the network level. KaVLAN isolates experiments in
their own 801.1q VLAN by reconfiguring the testbed’s switches for the duration of
the experiment. It can connect to switches using SNMP, SSH and telnet, supports a
number of different routers and switches (from Cisco, HP, 3com, Extreme Networks
and Brocade), and can easily be extended to support other products.

Several different types of VLANs are provided by KaVLAN to meet different user
needs (Figure 2):

– Local VLAN provides users with a fully isolated network that is only accessible
by connecting (generally using SSH) from a machine connected to both the VLAN
and the testbed’s network;

– Routed VLAN also provides users with a separate L2 network, but that network
can be reached from any node of the testbed since the network is routed by the
site’s router. It can typically be used to deploy a complex infrastructure including a
DHCP server (e.g. a Cloud middleware) inside the VLAN.

– Instead of providing isolation limited to one site (as with local and routed VLAN),
a Global VLAN provides a separate L2 network at the scale of the testbed, us-
ing 802.1ad (Q-in-Q) on the testbed’s backbone network. It is accessible from the
default testbed’s network using routing.

10 D. Balouek et al.

VLAN type
Ethernet
isolation

IP isolation Multi-site # of VLAN

local yes no no 3 per site
routed yes no no 3+3 per site
global yes no yes 1 per site

sit
e
A

sit
e
B

default VLAN
routing between
Grid’5000 sites

global VLANs
all nodes connected
at level 2, no routing

SSH gw

local, isolated VLAN
only accessible through

a SSH gateway connected
to both networks

routed VLAN
separate level 2 network,
reachable through routing

Fig. 2. Types of VLAN provided by KaVLAN

KaVLAN is also used on Grid’5000 in order to provide temporary interconnections
with other testbeds. For example, nodes can be removed from Grid’5000, and integrated
in another testbed, for the duration of an experiment.

3.4 Providing a Unified Interface with a REST API

Some Grid’5000 services are traditionally used through command-line interfaces. While
this a good step towards enabling the automation of experiments through scripting, it
still has a few limitations:

– Developing user-friendly command-line interfaces is hard and time-consuming.
– Ensuring consistency between several tools on the naming of parameters or the

formatting of outputs is hard, and even harder if backward compatibility must be
supported.

– Several tools output large volumes of structured data. In that case, parsing the out-
put of a command in a script is inconvenient, as there is often a need to handle error
conditions at the same time.

– Running external commands from scripts is inconvenient, since those commands
often need to be executed on specific machines over SSH.

In order to overcome those limitations in Grid’5000, the focus has been put in pro-
viding a consistent REST API that provides access to the various Grid’5000 services.
The Grid’5000 API is composed of several more focused APIs:

Adding Virtualization Capabilities to Grid’5000 Testbed 11

Reference API. This API gives access to a detailed description of most elements of the
testbed, such as nodes (with their hardware description) and network equipments
and links. This API can be used by users to find resources with specific character-
istics (e.g. node with Intel Nehalem architecture, and at least 24 GB or RAM), or
to ensure that nodes are still conforming to their description – a tool implementing
this verification runs on nodes at each boot.

Monitoring API. This API provides the state of node (available for reservation, used
by a job currently running on the testbed, etc.). It can be used by users, in combi-
nation with the Reference API, to find available resources matching their needs.

Metrology API. This API provides a common interface to various sensors, either soft-
ware (e.g. Ganglia) or hardware (e.g. energy consumption). Custom metrics can
also be added. It is aimed at providing users with the performance status of their
nodes during their experiments.

Jobs API. While the OAR resource management system is traditionally used through a
command-line interface, this API provides a REST interface to submit and manage
jobs.

Deployments API. Similarly to the Jobs API, the Deployments API provides a higher-
level interface to Kadeploy.

Several interfaces have been developed on top of the Grid’5000 API. First, a web
interface enables users to perform most actions, including resource selection (using the
Reference API) and reservation (using the Jobs API). Command-line tools have also
been developed. For example, g5k-campaign aims at orchestrating experiments startup.
It is featured in Section 4.3 where it is used–with custom engines–to deploy Cloud
frameworks.

4 Grid’5000 and Virtualization Capabilities: Use-cases

This section presents three use-cases that leverage latest contributions and system vir-
tualization as building blocks. In the first one, virtualization is used as a mean to tem-
porary emulate a larger testbed composed of 4000 peers. In the second one, a set of
scripts that enables the deployment of a significant number of VMs upon Grid’5000 is
presented. Thanks to these scripts, end-users may investigate particular concerns related
to the management of large-scale virtualized infrastructures at low-level. The last one
deals with the automation of IaaS deployment. Lot of Grid’5000 users want to inves-
tigate the impact of the virtualization layer on a particular workload. Delivering a tool
that relieves end-users with the burden of deploying and configuring an IaaS system is
a real advantage. In such scenarios, Grid’5000 is seen as an IaaS platform where end-
users may provision VMs according to the needs of the applications. Although adding
virtualization capabilities to Grid’5000 is an on-going task targeting the virtualization
of all devices, we believe that these three use-cases are already representative of a wide
scope of experiments.

4.1 Testing the Scalability of Kadeploy by Deploying 4000 Virtual Machines

Large-scale testbeds are a rare resource. With its 1300+ nodes, Grid’5000 is already one
of the largest experimental testbeds. However, its size can still be a limiting factor for

12 D. Balouek et al.

some experiments. One example of such experiments is the evaluation of the suitability
of Kadeploy (presented in Section 3.1) to manage Exascale clusters, which can be com-
posed of thousands of compute nodes. On Grid’5000, Kadeploy is installed using one
separate installation per site, rather than one global installation, which does not reflect
the configuration expected on Exascale clusters, with only one installation managing all
the nodes.

We therefore performed a set of experiments on Grid’5000 to evaluate the perfor-
mance of Kadeploy when used to manage a 4000-nodes cluster [26]. In order to create
a level-2 network to accomodate all the virtual machines, we used a global KaVLAN
network spanning four sites with a diameter of 1000 km. 668 nodes where used during
that experiment (out of 783 available with the required capabilities). 635 were used to
accomodate 3999 KVM virtual machines (managed using custom-made scripts), while
the remaining 33 nodes where used to host the Kadeploy server, a DNS server, a DHCP
server, and HTTP servers used to serve the minimal system image used during the
Kadeploy deployment.

The automated configuration of our 4000-nodes Kadeploy testbed took 40 minutes,
decomposed in: 20 minutes to reserve and deploy 668 Grid’5000 nodes; 5 minutes to
prepare all physical nodes; 15 minutes to instantiate the 4000 virtual machines. At this
point, it was possible to perform Kadeploy deployments over all the virtual machines.
We performed a successful deployment of 3838 virtual machines using a 430 MB-
environment in 57 minutes.

While the success of this experiment demonstrates the ability of Kadeploy to manage
clusters of 4000 nodes as well as the adequacy of Grid’5000 to perform large-scale
experiments in virtualized environments, it also allowed us to identify some bottlenecks
in Kadeploy, which opened the path for future works.

4.2 Playing with VMs at Large-Scale

Live-migration of virtual machines is one of the key-point of virtualization technolo-
gies. Besides simplifying maintenance operations, it provides an undeniable advantage
to implement fine-grained scheduling policies such as consolidation or load-balancing
strategies.

However, manipulating VMs throughout a large-scale and highly-distributed infras-
tructure as easy as traditional OSes handle processes on local nodes is still facing several
issues. Among the major ones, we can notice the implementation of suited mechanisms
to efficiently schedule VMs and to ensure the access to the VM images through different
locations. Such mechanisms should assume to be able to control, monitor, and commu-
nicate with both the host OSes and the guest instances spread across the infrastructure
at any time. If several works have addressed these concerns, the real experiments are
in most cases limited to few nodes and there is a clear need to study such concerns at
higher scales. With this objective in mind, a set of scripts[12] have been designed over
the Grid’5000 software stack. They allow us to easily start a significant number of KVM
instances upon several sites of the testbed. These instances can then be used at user con-
venience in order to investigate particular concerns such as, for instance, the impact of
migrating a large amount of VMs simultaneously or the study of new proposals dealing
with VM images management. Through the use of a global VLAN (Section 3.3), the

Adding Virtualization Capabilities to Grid’5000 Testbed 13

Fig. 3. Sequence diagram of the infrastructure installation

user may choose to virtualize all sites as a unique one or not. This enables to avoid
network domain issues when a VM is migrated from one network to another one.

To deliver such a setup, the script goes through 3 logical steps:

Booking Resources. Using the disco tool that provides multi-criteria and multi-site
search for available Grid’5000 resources, the first script is in charge of finding the
available nodes that support hardware virtualization, booking them and requesting
network resources (i.e. a /18 subnet for the IPs and a global VLAN if need be).
These resources are mandatory to deal with IP assignment and routing within the
infrastructure.

Deploying and Configuring Physical Machines. This task consists of deploying bare-
metal hypervisors and installing the packages related to the virtualization on the
host machines. It is worth noting that during the deployment phase, an additional
option of Kadeploy enables to reboot each physical machine inside a particular
VLAN. The script is leveraging this argument if the experiment involves several
sites and a global VLAN has been booked. At the end of the deployment, the global
routing is configured on each node and the network is isolated from the usual rout-
ing policy (cf Section. 3.3).

Starting the Virtual Machines. The virtual instances are started simultaneously, us-
ing a hierarchical structure among the physical nodes. Each virtual machine re-
ceives an IP address and a name leveraging g5k-subnets and a round robin as-
signment policy. The correlation between name and IP is stored in a dedicated file
propagated on each physical node. This allows us to identify and communicate with
all the virtual machines. Finally, the name and the IP of each VM are configured by
customizing the related copy-on-write image before booting it.

The sequence diagram in Figure 3 illustrates these different steps.
Deploying such a large number of VM instances led to several concerns and the use

of additional scripts has been required. Leveraging Taktuk [15], these scripts are used
to propagate virtual machines images on each bare metal, to communicate with all the
virtual instances to check whether the VMs are up or not and to control the state of the
whole system during the execution of experiments.

14 D. Balouek et al.

� �

1 d e p l o y m e n t :
2 e n g i n e :
3 name: opennebu la
4 s i t e s :
5 r e n n e s :
6 n o d e s : 5
7 s u b n e t : s l a s h 2 2 =1
8 w a l l t i m e : 2 : 0 0 : 0 0
9 o p e n n e b u l a :

10 c o n t r o l l e r u s e r : ” oneadmin”
11 c o n t r o l l e r g r o u p : ” c l o u d ”
12 h y p e r v i s o r : kvm
13 d a t a s t o r e :
14 ONs to re :
15 f i l e s y s t e m : h d f s
16 vmimage:
17 t t y l i n u x :
18 p a t h : / tmp / openNebulaImages / t t y l i n u x . img
19 d a t a s t o r e : ” ONstore ”

� �

Fig. 4. Configuration file for the OpenNebula g5k-campaign engine

Considering that physical machines must support hardware virtualization to start
KVM instances, the largest experiment that has been conducted up to now involved
10240 KVM instances upon 512 nodes through 4 sites and 10 clusters. The whole setup
is performed in less than 30 minutes with about 10 minutes spent on the deployment
of the nodes, 5 minutes for the installation and configuration of the required packages
on the physical hosts, while 15 minutes are dedicated to the booting of the virtual ma-
chines. The result of that work opens doors to the manipulation of virtual machines
over a distributed infrastructure like traditional operating systems handle processes on
a local node. This new functionality is currently used to validate large scale algorithms
in charge of managing virtualized infrastructures such as [24].

4.3 Delivering Cloud Platforms in One-Click

Although Cloud Computing is gaining consensus from both scientific and industrial
communities, its usage still faces some concerns that limit its adoption. The impact of
the virtualization technologies, the reliability of virtualized environments and the lack
of advanced provisioning technics are some examples of such concerns.

They are at the core of a new research direction targeted by the Grid’5000 com-
munity, aiming at enabling experimental research at all levels of the Cloud Computing
stack. The first step towards investigating Infrastructure-as-a-Service concerns within
Grid’5000 was achieved through a set of “sky computing” tools [25]. Such tools enabled
large-scale experiments that spanned across Grid’5000 and FutureGrid [17], harnessing
over 1500 cores for a federation of several Nimbus Clouds [19]. These experiments
showed that testbeds such as Grid’5000 may play an essential role in providing re-
searchers with configurable Cloud platforms similar to commercially available Clouds.

However, the complexity of managing the deployment and tuning of large-scale pri-
vate Clouds emerged as a major drawback. Typically, users study specific Cloud compo-
nents or carry out experiments involving applications running in Cloud environments.
A key requirement in this context is seamless access to ready-to-use Cloud platforms,

Adding Virtualization Capabilities to Grid’5000 Testbed 15

as well as full control of the deployment settings. To address these needs, a one-click
deployment tool for Infrastructure-as-a-Service environments has been developed [21].

One-click IaaS Clouds with g5k-Campaign. The deployment utility is designed to
install and configure fully-functional Cloud platforms over Grid’5000 in a fast and reli-
able manner. The current version of the system supports two open-source IaaS Clouds,
namely OpenNebula [20,22] and Nimbus [19,29].

The deployment tool is built on top of g5k-campaign, a framework devised for co-
ordinating experiment workflows and launching repeatable experiments on Grid’5000.
G5k-campaign relies on extensible engines to describe experiments. Such engines de-
fine the stages of an experiment: physical node reservations in Grid’5000, environment
deployment, configuration, and experiment execution.

To simplify user interaction with the Cloud deployment tools, the g5k-campaign
framework has been enhanced with a simple, yet powerful mechanism to customize
experiments. It relies on configuration files to specify user requirements in terms of
reserved nodes and Cloud environment settings, which are then transparently configured
during the execution of the deployment engine.

A configuration file example is provided in Figure 4. It consists of several YAML
indented blocks that account for the various steps of the deployment process. The de-
ployment block includes Grid’5000 node reservation details, such as the sites to be
reserved and the number of nodes for each of them. The opennebula block comprises
configuration options for OpenNebula, ranging from user information to VM storage
mechanisms and APIs. Note that users can also describe virtual machine images in the
vmimage sub-block, to automate image uploading into the OpenNebula system.

A wide range of Cloud-specific parameters can thus be managed by the deploy-
ment tools, including hypervisor and virtualization settings, host nodes configuration,
installation of external packages, authentication settings, virtual networks creation, con-
figuration of the various storage mechanisms for VM images and of the Cloud user
interfaces.

The implementation of the Cloud deployment tools heavily relies on the latest ver-
sion of the Grid’5000 software stack introduced in Section 3. First, to provide support
for virtualization and full control over the environment, the Cloud platforms are in-
stalled on standard environments deployed on the physical machines through Kadeploy.
The interaction with the Grid’5000 services is implemented on top of the Grid’5000
API, which is in charge of managing the node reservations and deployments, as well as
of retrieving the available nodes and reporting errors. Another essential building block
is represented by the g5k-subnets tool. It provides the virtual networks needed by the
Cloud services to equip VMs with appropriate IP addresses on each site.

Zoom on the OpenNebula Deployment Engine. The engine is responsible for han-
dling the installation process of the OpenNebula environment, either from Debian pack-
ages or from specific source code archives. It automatically carries out the deployment
and configuration, with a particular focus on storage mechanisms for virtual machines.
Currently, the OpenNebula engine supports ssh-based image propagation and shared
storage based on NFS (for single-site deployments) or HDFS [28] (for multi-site de-
ployments), to enable live migration and enhance scalability.

16 D. Balouek et al.

OpenNebula
engine

Kadeploy
G5k-

subnets
OpenNebula

nodes
OAR

Run
Reserve

Installation results

OpenNebula
controller

Deploy

Send configuration

Get subnets

Parallel
Install

Parallel
Configure

Grid’5000
API

Reserve subnets

Parallel deploy

Fig. 5. Sequence diagram of an OpenNebula engine execution

The OpenNebula engine can be executed by passing a configuration file, such as the
one given in Figure 4, to the g5k-campaign tool, which is in charge of interpreting it
and delivering the ready-to-use Cloud platform, as in the following command:

g5k-campaign -C opennebulaMultisite.yml
The sequence diagram in Figure 5 describes the execution workflow of the OpenNeb-

ula engine. First a node reservation is made for each site specified in the configuration
file through the Grid’5000 API. Along with the nodes, the OAR system also reserves
a range of virtual IPs corresponding to each site. The next step is the parallel deploy-
ment of one or more environments on the reserved nodes enabled by Kadeploy. Once
the nodes are operational, the OpenNebula engine retrieves the reserved IP ranges from
each site and then creates specific configuration settings for each node, according to
their role (e.g., the OpenNebula controller is assigned the list of host nodes). Finally,
OpenNebula is installed and configured on each node in parallel and the outcome of
these processes is returned to the engine. When the execution of the engine is success-
fully completed, the user can access and perform experiments on the deployed Cloud
platform, for the duration of the Grid’5000 reservation defined in the configuration file.
These execution stages apply to both multi-site and mono-site deployments, as their out-
come is similar: a single Cloud comprising one controller and a set of host nodes. The
specificity of a multi-site Cloud is that it will have access to several virtual networks,
each of them corresponding to a group of host nodes belonging to the same site.

The OpenNebula deployment engine is written in Ruby and the installation and con-
figuration are done on each physical node by using the Chef [23] configuration manage-
ment framework. The Chef recipes are designed in a modular manner, to allow Cloud
users to add or extend the current OpenNebula configuration options. This tool was
validated by installing OpenNebula on 80 physical nodes belonging to 3 Grid’5000
sites, on which we deployed 350 virtual machines. The average time to deploy such a
ready-to-use OpenNebula Cloud is less than 20 minutes, with about 6 minutes spent on
infrastructure installation and configuration, while the rest is taken up by nodes reser-
vation and deployment. Moreover, subsequent re-deployments take only 5 minutes, as
the environments are already running and required packages are installed.

Adding Virtualization Capabilities to Grid’5000 Testbed 17

5 Related Work

Several experimental platforms exist over the world for different target sciences.
Around network and system research, Emulab [4] is a network testbed made avail-

able to the international academic community since 2001. The original motivation is to
provide a single site where users can deploy and execute replayable networked experi-
ments on dedicated hardware. The platform provides customizable network and servers
but it is not designed nor sized to host numerous and large experiments related to vir-
tualization, storage or power management. Protogeni [10] is an USA national project
that extends the concepts of Emulab. The key concept is to build a federation of geo-
graphically distributed testbeds to provide users with a strongly heterogeneous infras-
tructure that will be suitable to a larger variety of networked experiments on dedicated
hardware. PlanetLab [9] is a global research network that supports the development of
new network services (overlay networks) using virtualization. The topology of Plan-
etLab is based on a large number (5̃00) sites with 2 or 3 nodes on each site. While
it provides a very interesting testbed from the point of view of the distribution of the
resources at a global scale for network-based experiments, experiments running at the
same time compete for machine-time and network links. Therefore, experiences’ repro-
ducibility is not guaranteed, and experiments involving clusters or data centers are not
possible. OneLab [6] provides an open federated laboratory, built on PlanetLab Europe,
which supports network research for the Future Internet. Finally, FIT [5] from the 2010
French EQUIPEX call targets the Future Internet of Things. It gathers three infras-
tructures, a cognitive radio testbed, a set of embedded communicating object (ECO)
testbeds, and a set of wireless OneLab testbeds mostly designed for various network
experiments.

Several Grid targeted platforms also exist along with Grid’5000. DAS-4 [3] is an
experimental grid built in the Netherlands. It allows reproducible results but the soft-
ware stack cannot be configured. FutureGrid [17], which is part of the NSFs TeraGrid
high-performance cyber infrastructure in the USA, provides an architecture taking its
inspiration from to the one developed in Grid’5000. It targets researches on Grids and
Clouds. It increases the capability of the XSEDE to support innovative computer sci-
ence research requiring access to lower levels of the grid software stack, the networking
software stack, and to virtualization and workflow orchestration tools. There is also a
large number of production platforms (such as the GENCI supercomputers in France)
that are used for different areas of research. They are not mentioned here because the
software stack of their clusters cannot be adapted for low- level research experiments
or experiments using specific software stacks.

Finally, some platforms allow experiments on Clouds. Amazon EC2/S3 [1] is a com-
mercial Cloud (IaaS platform). While this platform is mainly made for commercial
and production applications, several computer science experiments have recently per-
formed on this platform. Google/IBM provided until October 2011 a Cloud running the
Hadoop implementation of the MapReduce programming interface. It could be used
to test large-scale data application under this protocol. BonFIRE [2] is a FP7 Euro-
pean project supported by the FIRE unit (Future Internet Research and Experimenta-
tion) to build a testbed for Internet of Services Experimentation. INRIA is a member
of the BonFIRE consortium and one of its 5 testbed providers, thus taking part in the

18 D. Balouek et al.

construction of a European-wide facility for experiment-driven research in Future Inter-
net technologies. Finally, Open Cirrus [7,11] targets experiments around Clouds on bare
hardware using distributed clusters available over the world. Led by private companies,
it allows multiple experiments using different services (physical resource allocation ser-
vice, virtual machine resource allocation service, distributed storage service, distributed
computing frameworks). VLANs are used to isolate experiments between each others.

6 Conclusions and Future Work

The ability to design and support experiments of large scale distributed algorithms and
software is now a mandatory aspect of computer science. When it was started in 2003,
the objective of the Grid’5000 project was to ensure the availability of a scientific instru-
ment for experiment-driven research in the fields of large-scale parallel and distributed
systems. It has since demonstrated that its fundamental concepts and tools to support
experiment-driven research in parallel and distributed systems are solid enough attract
a large number of users and to stay pertinent even though the focus of research in these
areas has evolved in the past nine years. In the last years, Grid’5000 has had a struc-
turing effect on research in parallel and distributed computing in France. Many French
ANR projects have been submitted by Grid’5000 users targeting this platform as their
validation instrument. Bridges have been set with production grids. Several collabo-
rations will also be set up with scientists of other disciplines to help them port their
applications at a higher scale, exploring new algorithms and parallelization approaches,
before using production grids or HPC platforms. Moreover, this platform has been in-
ternationally recognized and it serves as a foundation for new scale platforms such as
FutureGrid in the US. Hence, Grid’5000 has contributed to solve many challenges in
the parallel and distributed computing.

Through our experience in building a large scale and reconfigurable platform and the
evolution of researches towards virtualized infrastructures and Clouds, we worked on
new features and tools that allow such experiments to be deployed over multiple sites.
In this paper, we gave an overview of these tools and the way they can be used for
different use cases. However the story is not over and some work remains to be done
around new functionnalities.

Whereas abstraction in programming languages enables to design and implement
complex IT systems through distributed infrastructures, system virtualization has been
mainly limited to one physical machine. With respect to the current utilization of IT
through networks in general and Internet in particular, as well as the large amount of
available data, the next steps consist in extending virtualization concepts to network and
storage facilities. The OpenFlow [8] standard that allows researchers to deploy routing
and switching protocols over networks will certainly ease the deployment of large scale
network-based experiments. Big Data is also a major research issues for several sciences
as well as business applications. Allowing the design of new middleware frameworks
for such applications will also require at least new hardware for our experimental plat-
forms (including large number of SSD drives). Finally, we learned that the tools used for
the deployment of large scale experiments involving several different software stacks
need to be as simple as possible. Simplifying the use of our platform for users is thus
also one of our major tasks in the near future.

Adding Virtualization Capabilities to Grid’5000 Testbed 19

References

1. Amazon ec2, http://aws.amazon.com/fr/ec2/
2. Bonfire, http://www.bonfire-project.eu/
3. Das-4, http://www.cs.vu.nl/das4/
4. Emulab, http://www.emulab.net/
5. Fit, http://fit-equipex.fr/
6. Onelab, http://www.onelab.eu/
7. Open cirrus, https://opencirrus.org/
8. Openflow, http://www.openflow.org
9. Planetlab, http://www.planet-lab.org/

10. protogeni, http://www.protogeni.net/
11. Avetisyan, A., Campbell, R., Gupta, I., Heath, M., Ko, S., Ganger, G., Kozuch, M.,

O’Hallaron, D., Kunze, M., Kwan, T., Lai, K., Lyons, M., Milojicic, D., Lee, H.Y., Soh, Y.C.,
Ming, N.K., Luke, J.Y., Namgoong, H.: Open Cirrus: A Global Cloud Computing Testbed.
IEEE Computer 43(4), 42–50 (2010)

12. Booting and using virtual machines on Grid’5000, https://www.grid5000.fr/
mediawiki/index.php/Booting and Using Virtual Machines on
Grid’5000/

13. Capit, N., Da Costa, G., Georgiou, Y., Huard, G., Martin, C., Mounié, G., Neyron, P., Richard,
O.: A batch scheduler with high level components. In: Cluster Computing and Grid 2005
(CCGrid 2005), Cardiff. Royaume-Uni. (2005),
http://hal.archives-ouvertes.fr/hal-00005106

14. Cappello, F., Caron, E., Dayde, M., Desprez, F., Jegou, Y., Primet, P., Jeannot, E.,
Lanteri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R., Quetier, B., Richard, O.:
Grid’5000: A large scale and highly reconfigurable grid experimental testbed. In: Pro-
ceedings of the 6th IEEE/ACM International Workshop on Grid Computing, GRID 2005,
pp. 99–106. IEEE Computer Society, Washington, DC (2005), http://dx.doi.org/
10.1109/GRID.2005.1542730

15. Claudel, B., Huard, G., Richard, O.: Taktuk, adaptive deployment of remote executions. In:
Proceedings of the International Symposium on High Performance Distributed Computing,
HPDC (May 2009)

16. Desprez, F., Fox, G., Jeannot, E., Keahey, K., Kozuch, M., Margery, D., Ney-
ron, P., Nussbaum, L., Perez, C., Richard, O., Smith, W., von Laszewski, G.,
Voeckler, J.: Supporting Experimental Computer Science. Report, Argonne National Lab-
oratory, Argonne (March 2012), http://www.nimbusproject.org/downloads/
Supporting Experimental Computer Science final draft.pdf

17. FutureGrid, https://portal.futuregrid.org/
18. Jeanvoine, E., Sarzyniec, L., Nussbaum, L.: Kadeploy3: Efficient and Scalable Operating

System Provisioning for HPC Clusters. Rapport de recherche RR-8002, INRIA (June 2012),
http://hal.inria.fr/hal-00710638

19. Keahey, K., Freeman, T.: Science Clouds: Early Experiences in Cloud Computing for Sci-
entific Applications. In: Proceedings of the 2008 Conference on Cloud Computing and Its
Applications (CCA), Chicago, IL, USA (2008)

20. Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Elastic management of cluster-
based services in the cloud. In: Proceedings of the 1st Workshop on Automated Control
for Datacenters and Clouds (ACDC), pp. 19–24. ACM, New York (2009)

21. One-click Cloud deployment tools, https://www.grid5000.fr/mediawiki/
index.php/Deployment Scripts for IaaS Clouds on Grid%275000

22. OpenNebula, http://opennebula.org/

http://aws.amazon.com/fr/ec2/
http://www.bonfire-project.eu/
http://www.cs.vu.nl/das4/
http://www.emulab.net/
http://fit-equipex.fr/
http://www.onelab.eu/
https://opencirrus.org/
http://www.openflow.org
http://www.planet-lab.org/
http://www.protogeni.net/
https://www.grid5000.fr/mediawiki/index.php/Booting_and_Using_Virtual_Machines_on_Grid'5000/
https://www.grid5000.fr/mediawiki/index.php/Booting_and_Using_Virtual_Machines_on_Grid'5000/
https://www.grid5000.fr/mediawiki/index.php/Booting_and_Using_Virtual_Machines_on_Grid'5000/
http://hal.archives-ouvertes.fr/hal-00005106
http://dx.doi.org/10.1109/GRID.2005.1542730
http://dx.doi.org/10.1109/GRID.2005.1542730
http://www.nimbusproject.org/downloads/Supporting_Experimental_Computer_Science_final_draft.pdf
http://www.nimbusproject.org/downloads/Supporting_Experimental_Computer_Science_final_draft.pdf
https://portal.futuregrid.org/
http://hal.inria.fr/hal-00710638
https://www.grid5000.fr/mediawiki/index.php/Deployment_Scripts_for_IaaS_Clouds_on_Grid%275000
https://www.grid5000.fr/mediawiki/index.php/Deployment_Scripts_for_IaaS_Clouds_on_Grid%275000
http://opennebula.org/

20 D. Balouek et al.

23. Opscode. Chef, http://www.opscode.com/chef/
24. Quesnel, F., Lèbre, A., Südholt, M.: Cooperative and Reactive Scheduling in Large-Scale

Virtualized Platforms with DVMS. Concurrency and Computation: Practice and Experience,
p. XX (December 2012), http://hal.archives-ouvertes.fr/hal-00675315

25. Riteau, P., Tsugawa, M., Matsunaga, A., Fortes, J., Keahey, K.: Large-Scale Cloud Com-
puting Research: Sky Computing on FutureGrid and Grid’5000. ERCIM News (83), 41–42
(2010)

26. Sarzyniec, L., Badia, S., Jeanvoine, E., Nussbaum, L.: Scalability Testing of the Kade-
ploy Cluster Deployment System using Virtual Machines on Grid’5000. In: SCALE
Challenge 2012, Held in Conjunction with CCGrid 2012, Ottawa, Canada (May 2012),
http://hal.inria.fr/hal-00700962

27. SC11 Support for Experimental Computer Science Worskhop,
http://graal.ens-lyon.fr/˜desprez/SC11workshop.htm

28. Shvachko, K., Huang, H., Radia, S., Chansler, R.: The Hadoop distributed file system. In:
MSST 2010: Proceedings of the 26th IEEE Symposium on Massive Storage Systems and
Technologies, Incline Village, NV, USA, pp. 1–10 (May 2010)

29. The Nimbus Project, http://www.nimbusproject.org/
30. The OAR Project, http://oar.imag.fr/

http://www.opscode.com/chef/
http://hal.archives-ouvertes.fr/hal-00675315
http://hal.inria.fr/hal-00700962
http://graal.ens-lyon.fr/~desprez/SC11workshop.htm
http://www.nimbusproject.org/
http://oar.imag.fr/

Papers

Improving Cost-Efficiency through Failure-Aware
Server Management and Scheduling in Cloud�

Laiping Zhao1 and Kouichi Sakurai2

1 School of Computer Software, Tianjin University, China
2 Department of Informatics, Kyushu University, Japan

zhaolaiping@gmail.com, sakurai@csce.kyushu-u.ac.jp

Abstract. We examine the problem of managing a server farm in a cost-efficient
way that reduces the cost caused by server failures, according to an Infrastructure-
as-a-Service model in cloud. Specifically, failures in cloud systems are so frequent
that severely affect the normal operation of job requests and incurring high penalty
cost. It is possible to increase the net revenue through reducing the energy cost and
penalty by leveraging failure predictiors. First, we incorporate the malfunction
and recovery states into the server management process, and improve the cost-
efficiency of each server using failure predictor-based proactive recovery. Second,
we present a revenue-driven cloud scheduling algorithm, which further increases
net revenue in collaboration with server management algorithm. The formal and
experimental analysis manifests our expected net revenue improvement.

Keywords: Net Revenue, Server Management, Scheduling, Failure Prediction.

1 Introduction

With the infrastructure-as-a-service (IaaS) model in cloud computing, a business is en-
abled to run jobs on virtual machine (VM) instances rented from the infrastructure ser-
vice providers in a pay-as-you-go manner. As shown in Figure 1, multiple applications
are consolidated to share the same physical server through virtualization technologies.
VM instances are offered from a diversified catalog with various configurations. Jobs
are encapsulated into VMs, and customers can start new VMs or stop unused ones to
meet the increasing or decreasing workload, respectively, and pay for what they use
thereafter. In this process, customers do not have full control over the physical infras-
tructure. Instead, the provider sets a resource management policy determining the phys-
ical servers for starting VMs. VM instances are commonly provided under a Service
Level Agreement (SLA), which gurantees the service quality, and a penalty is punished
on the provider if SLA is violated. For example, Amazon EC2 claims that the customer
is eligible to receive a service credit equal to 10% of their bill, if the annual uptime
percentage is less than 99.95% during a service year. During the job execution, a VM
may migrate from one server to another according to the policy.

� This work is based on ”On Revenue Driven Server Management in Cloud”, by L. Zhao and K.
Sakurai, which appeared in Proc. of 2nd International Conference on Cloud Computing and
Service Science, Portugal, April 2012.

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 23–38, 2013.
c© Springer International Publishing Switzerland 2013

24 L. Zhao and K. Sakurai

Fig. 1. The cloud IaaS model

SLA violation, that is failing to meet the availability level, is generally caused by in-
adequate resources or server failures. Managing SLA violations caused by inadequate
resources has been studied in [1]. However, few of them consider reducing the SLA vi-
olation cost caused by server failures. As the system scale continues to increase, prob-
lems caused by failures are becoming more severe than before ([2], or [3, chap.7]). For
example, according to the failure data from Los Alamos National Laboratory (LANL),
more than 1,000 failures occur annually at their system No.7, which consists of 2014
nodes in total [2], and Google reports 5 average worker deaths per MapReduce job in
March 2006 [4].

The frequent failures as well as the resulting SLA violation costs lead to a practi-
cal question: how to improve the cost efficiency of service providing? In this paper, we
aim to explore a new cost-efficient way to manage the cloud servers by leveraging the
existed failure prediction methods. The basic idea is that, a failure-prone server should
reject a new arrived job, or move a running job to another healthy server, then proac-
tively accept manual repairs or rejuvenate itself to a healthy state. Our contributions
mainly fall into three parts:

– We analyze the cost for job execution and SLA violation, and propose a novel server
management model by combining the failure prediction together with proactive
recovery into server state transitions.

– We design an adaptive net revenue-based decision making policy that dynamically
decides whether accepting a new job request or not, and whether moving the run-
ning job to another healthy server or not while achieving high cost efficiency.

– We further increase the cost-efficiency through a collaboration of server manage-
ment algorithm and scheduling algorithm, i.e., MaxReliability. The experimental
results manifest the revenue improvement.

2 Related Work

Feasibility of our approach depends on the ability to anticipate the occurrence of fail-
ures. Fortunately, a large number of published works have considered thecharacteristics

Improving Cost-Efficiency through Failure-Aware Server Management and Scheduling 25

of failures and their impact on performance across a wide variety of computer sys-
tems. These works include either the fitting of failure data to specific distributions or
have demonstrated that the failures tend to occur in bursts [5],[6]. Availability data
from BONIC is modeled with probability distributions [7], and their availabilities are
restricted by not only site failures but also the usage patterns of users. Fu and Xu [8]
propose a failure prediction framework to explore correlations among failures and fore-
cast the time-between-failure of future instances. Their experimental results on LANL
traces show that the system achieves more than 76% accuracy. In addition to processor
failures, failure prediction is also studied on hard disk drives [9]. As a survey, Salfner
et al. [10] present a comprehensive study on the online failure prediction approaches,
which can be split into four major branches of the type of input data used, namely, data
from failure tracking, symptom monitoring, detected error reporting, and undetected er-
ror auditing. In each branch, various methodologies are applied, for instance, bayesian
network, machine learning, time series analysis, fuzzy logic, markov chain, and pattern
recognition.

Economic cost for constructing a data center has been studied in [11], [12], [3],
which provide us with a deep understanding of cloud system cost. The revenue maxi-
mization problems discussed in the literature[13][14][15], are quite close to our work.
Mazzucco et al. [15] measure the energy consumed by active servers, and maximize
the revenue by optimizing the number of servers to run. Macı́as et al. [14] present an
economically enhanced resource manager for resource provisioning based on economic
models, which supports the revenue maximization across multiple service level agree-
ments. Maximizing of the quality of users’ experiences while minimizing the cost for
the provider is studied in [16]. And Fitó et al. [13] model the economic cost and SLA for
moving a web application to cloud computing. The proposed Cloud Hosting Provider
(CHP) could make use of the outsourcing technique for providing scalability and high
availability capabilities, and maximize the providers’ revenue. In contrast to their pro-
posals, our goal is to improve the cost efficiency of servers by leveraging the failure
prediction methods.

3 Policy for Server Management

3.1 Cloud Server Management

A physical server is described with five states as follows:
IDLE: There are no VMs executing on the server.
RUNNING: The server is executing some VM(s).
TERMINATED: The server successfully finishes jobs, then recycles the memory and

clears the disk.
MALFUNCTION: A failure occurs, and the server breaks down.
RECOVERY: Troubleshooting, which could be a simple reboot or repair by a skilled

staff.
Figure 2 illustrates the above states and their state transitions for a physical server.

We incorporate both the MALFUNCTION and RECOVERY into the states due to the
common failures. Although failures may occur at anytime, the probability of failure

26 L. Zhao and K. Sakurai

Fig. 2. The state transitions of (a) Reactive recovery and (b) Proactive-Reactive recovery

occurrence in the TERMINATED or IDLE state is far less than in the RUNNING state.
Therefore, a single in-degree to the MALFUNCTION state is exploited.

Initially, when a new physical server joins a server farm, or an existing server has
finished all deployed VMs and refreshed his status, the server enters the IDLE state and
becomes ready for serving a next job.

Reactive Recovery. When a job arrives, the server starts a required VM and accepts
the job without hesitation, then comes into the RUNNING state. In case of a successful
execution, the job is completed, and the server enters the TERMINATED state. After
clearing the memory and disk, the server returns to the IDLE state. If a failure occurs,
the server comes into the MALFUNCTION state. Certain recovery methods, e.g., re-
pair, rebooting, would be activated to fix the malfunction, then the server returns to the
IDLE state. Note that the recovery could be launched by a skilled staff or automatically
activated by a tool like watchdog.

Proactive-Reactive Recovery. Proactive recovery is a useful tool for improving the
system efficiency and reducing the economic cost. However, the effects of proactive
recovery heavily depend on the failure prediction accuracy, which is still in the rough
primary stage currently. Therefore, we employ a hybrid approach based on both proac-
tive recovery and reactive recovery here. An architectural blueprint for managing server
system dependability in a proactive fashion is introduced in Polze, Troger, and Salfner
(2011).

When a job arrives, the server can: 1. accept the job and change to RUNNING (step 2
in Figure 2(b)); 2. reject the job and stay in IDLE (step 8); 3. reject the job and activate
a proactive recovery operation if a failure is predicted (step 6). To assure a positive net
revenue, we devise a utility function to handle such decision making problems.

In the first case, if the server comes into the RUNNING state, there are three further
possible transitions coming out from the RUNNING state: 1a. if a failure is anticipated
during RUNNING, move all running VMs and proactively launch the recovery (step
6); 1b. if a failure occurs without warning, the server reactively comes into the MAL-
FUNCTION state (step 4); 1c. if there are no failures, complete the job successfully
(step 3). A similar utility based function is also employed here for the proactive recov-
ery operation. In the second and third cases, the server needs to decide whether to stay
in IDLE state, or activate a proactive recovery after a job rejection. This is reasonable

Improving Cost-Efficiency through Failure-Aware Server Management and Scheduling 27

Table 1. List of notations

Notations Definition

Prci Price of the VM instance i ($/hour).
Prcegy Price of energy consumption. ($/kw.h)
USIOi

Fixed cost of a VM i.
Pi Energy consumption per time unit for VM i.
Ucoei Task execution cost per time unit. Ucoei = USIOi

+ PrcegyPi

Tvm Job execution time, or contract life.
Coei Total task execution cost of VM i. Coei = UcoeiTvm

Pen Penalty for SLA violations.
TM Time spent on MALFUNCTION state.
TR Time spent on RECOVERY state.
PSLA The percentage of total bill that the provider has to refund.
Pfail Probability of failures.
Cmig VM migration cost.
T rmn
vm VM’s remaining lifetime.

Pmig
fail Probability of failures for a migrated VM.

because a negative net revenue may be expected from a long-running job, whereas a
positive net revenue is expected from a short-running job. If the rejected job is a normal
or small size one, then the server activates a proactive recovery, otherwise stays in the
IDLE state.

3.2 Net Revenue

Our net revenue model is similar to those used in the literature [14] [13] except that
we do not consider the situation of outsourcing a application to a third-party and hence
there is no outsourcing cost [13]. Notations are listed in Table 1.

Price (Prc): is the amount of money that a customer has to pay if a cloud provider
finishes his job successfully. It usually takes the time piece as the unit. For instance,
Amazon EC2 standard small instance charges 0.085$ per hour. Cost of execution (Coe):
is the amount of money that a cloud provider has to spend on maintaining a healthy VM
as well as a physical server for providing service. As the service providing is the ma-
jor source of profit, any cost for maintaining such service providing will be considered
as the part of the total costs, which typically includes fixed costs (e.g., site infrastruc-
ture capital costs, IT capital costs) and variable costs (e.g., energy costs, operating ex-
penses). Penalty (Pen): is the amount of money that a provider has to pay if the SLA is
violated. Denote by Tvm the working time (i.e., contract life or job execution time), the
net revenue obtained from deploying VM i is computed as below,

Rvui = Prci · Tvm − Coei − Peni (1)

The prices of different VM instances have been clearly announced by the providers,
and can be publicly accessed. For the cost of execution, we haveCoei = Ucoei ·Tvm =
(USIOi + Prcegy · Pi) · Tvm, where USIOi comprises site infrastructure capital costs
(Sic), IT capital costs (Icc) and operating expenses (Ope). Prcegy denotes the hourly
energy cost (Enc), and Pi denotes the consumed energy [3][11][12]. For the penalty,

28 L. Zhao and K. Sakurai

Run Idle Termi. Malfunc. Reco.
Running 0/0 0/0 P ′

02/P02 P ′
03/P03 0/P04

Idle 1/P10 0/P11 0/0 0/0 0/P14

Terminated 0/0 1/1 0/0 0/0 0/0
Malfunction 0/0 0/0 0/0 0/0 1/1
Recovery 0/0 1/1 0/0 0/0 0/0

Fig. 3. The state transition probability for
Reactive/Proactive-reactive recovery

Reactive recovery Revenue
Path 1 IDLE - RUNNING - TERMINATE - IDLE AR

Path 2 IDLE - RUNNING - MALFUNCTION - RECOVERY - IDLE −BR

Proactive-Reactive recovery
Path 1 IDLE - RUNNING - TERMINATE - IDLE APR

Path 2 IDLE - RUNNING - MALFUNCTION - RECOVERY - IDLE −BPR

Path 3 IDLE - RUNNING - RECOVERY - IDLE CPR

Path 4 IDLE - IDLE 0

Path 5 IDLE - RECOVERY - IDLE −DPR

Fig. 4. The server running paths and their cor-
responding net revenues

we have Peni = Prci · Tvm · PSLA, where PSLA denotes the fraction of total bill that
the provider has to refund.

3.3 Expected Net Revenue

Next we compute the expected net revenue from providing service or possible losses
from server failures. Figure 3 shows the probabilities of state transitions for both the re-
active recovery and proactive-reactive (Figure 2). Figure 4 shows all the state transition
paths and the corresponding revenues for both of them.

In reactive recovery, the cloud server could obtain positive net revenue from job
execution in path 1 (denoted as AR = (Prc−Ucoe) · Tvm). While in path 2, the cloud
server not only obtains nothing due to the failure, but also has to pay the penalty and
losses the execution cost. Let TM and TR be the time spent on MALFUNCTION and
RECOVERY state respectively, then BR = USIO(Tvm + TM + TR) + Prcegy · P ·
Tvm + Prc · Tvm · PSLA.

In the proactive-reactive recovery, the cloud server shows a similar situation in path
1 and path 2, that is APR = AR and BPR = BR, but with different probabilities. In
path 3, a proactive recovery is activated during the running process. The running VMs
are interrupted and moved to other healthy servers, where they subsequently proceed
until finish. During this process, the cloud provider eventually gets the revenue from
these jobs. The revenue generated in terms of the old server is computed based on the
finished fraction of the total workload, denoted by Pfnd, therefore, we have CPR =
Pfnd(Prc − Ucoe)Tvm − USIOTR. In path 4 and 5, a job rejection operation only
implies a local server’s decision, and the rejected job is eventually accepted by another
healthy server from the perspective of cloud provider. Thus, there are no losses caused
from the job rejection. And the recovery cost spent on the proactive recovery operation
in path 5 is: DPR = USIOTR.

According to Figure 3 and Figure 4, the expected net revenue generated by reactive
recovery is:

RvuR = ARP
′
02 −BRP

′
03 (2)

The expected net revenue generated by proactive-reactive recovery is:

RvuPR = APRP10P02 −BPRP10P03 + CPRP10P04 −DPRP14 (3)

Theorem 1. RvuPR > RvuR.

Improving Cost-Efficiency through Failure-Aware Server Management and Scheduling 29

Proof.

RvuPR −RvuR = PrcTvm×
[PSLA(P

′
03 − P10P03) + (P10P02 − P

′
02) + PfndP10P04]+

USIO[Tvm(P
′
03 − P10P03 − PfndP10P04 + P

′
02 − P10P02)+

TM (P
′
03 − P10P03) + TR(P

′
03 − P10(P03 + P04)− P14)]+

PrcegyPTvm[P
′
02 − P10P02 + P

′
03 − P10P03 − PfndP10P04]

(4)

With the two prerequisites, P10P02 = P ′
02 and P10 · (P03+P04)+P11+P14 = P ′

03,
we have,

– PSLA(P
′
03 − P10P03) + (P10P02 − P ′

02) + PfndP10P04 > 0

–
Tvm(P

′
03 − P10P03 − PfndP10P04 + P

′
02 − P10P02) + TM (P

′
03 − P10P03) + TR

(P
′
03 − P10(P03 + P04)− P14) > 0

– P
′
02 − P10P02 + P

′
03 − P10P03 − PfndP10P04 > 0

Hence, the theorem is established.

3.4 Decision Making

The server state transitions contain three decision making points. The first one is to
decide whether to accept or reject a new arriving job, and followed by a further decision
is on whether or not to activate proactive recovery if the job is rejected. The third one is
to decide whether to activate a proactive recovery or continue the job execution when
the job is under the RUNNING state. In our proposal, these decisions are made on
behalf of physical servers based on the expected net revenue.

Accept or Reject a Job. A job arriving at a cloud server could be a new or rejected or
failed or migrated job. After its lifetime (i.e., Tvm) is determined by user’s specification
or estimates, we can predict the probability of failures (i.e., Pfail) in this interval using
associated stressors [17]. The possible net revenue obtained from accepting a job by
server i can be computed as,

Rvui = Ai
PR · (1− Pfail) (5)

Accounting of malfunction losses during the middle of job execution consists of
direct economic loss and indirect economic loss. A cloud provider would directly get
a penalty from the SLA agreement, and he also has to afford the cost for recovery
operation. The possible losses can be computed as,

Losi = Bi
PR · Pfail (6)

If Rvui > Losi, the VM i will be deployed for execution, and if not, the VM i will
be rejected. In other words, the VM i is accepted when the following condition is held,

Pfail <
Ai

PR

Ai
PR +Bi

PR

(7)

30 L. Zhao and K. Sakurai

In case of a migrated VM, additional cost is spent on VM migration. Let Cmig
be the cost for moving the VM from an old physical server to a new one, and T rmn

vm

be the remaining lifetime. We have,Rvumig
i = (Ai,rmn

PR − Cmig) · (1 − Pmig
fail) =

((Prci−Ucoei)·T rmn
vm −Cmig)·(1−Pmig

fail) andLosmig
i = (Bi,rmn

PR +Cmig)·Pmig
fail =

(Peni + USIO(T
rmn
vm + TM + TR) + Prcegy · P · T rmn

vm + Cmig)Pmig
fail

Let Rvumig
i > Losmig

i , then the condition 7 is changed into,

Pmig
fail <

Ai,rmn
PR − Cmig

Ai,rmn
PR +Bi,rmn

PR

(8)

Proactive Recovery or Not. Once a job is rejected, a cloud server further has two op-
tions of launching the proactive recovery or doing nothing. Denote by Tvm the average

lifetime of all history VMs successfully completed on a server, and PTvm

fail the predicted

probability of failures within next Tvm time. Then if PTvm

fail < Pfail (The right side
of Inequality 7), the cloud server does nothing but waits for the next job. Otherwise,
the server activates the proactive recovery. This is because failure probability increases

over time. A next normal size job still can be accepted if PTvm

fail < Pfail is held. Note
that it is possible that the server stays in a starvation state for a long time, if no short-
running VM is dispatched to the server. In such case, activate the proactive recovery if
the leisure time exceeds a pre-defined threshold.

Activate VM Migaration or Not. For a long-running VM, it is difficult to have an
accurate prediction on the failure probability during that long time. Moreover, certain
types of failures always come with some pathognomonic harbingers. It is a difficult
to predict such failures without particular harbingers. Therefore, we also activate the
failure prediction during the running process. And proactive recovery is launched when
inequality 7 (inequality 8 if it is a migrated job) is violated for all the local VMs.

The VM migrates from a server i to a server j only because j can yield a greater
net revenue. The expected revenue obtained from no migration is the same as Rvui

(Equation 5), except that the failure probability (P rmn
fail) is for the remaining lifetime

(i.e., T rmn
vm): Rvurmn

i = Ai,rmn
PR · (1−P rmn

fail) = (Prci −Ucoei) ·T rmn
vm · (1−P rmn

fail).

The expect net revenue obtained from a migration has been described as Rvuj
mig . Let

Rvumig
j > Rvurmn

i , we have,

Pmig
fail <

Ai,rmn
PR · P rmn

fail − Cmig

Ai,rmn
PR − Cmig

(9)

Therefore, a new server j whose failure probability (i.e., PMig
fail) follows both In-

equality 8 and 9 will be selected to execute the migrated VM. In case of more than one
server meets this condition, the VM migrates to the one with maximum reliability to
proceed. If no appropriate processors are found, maintain the VM at the original server
until finish or failure.

Improving Cost-Efficiency through Failure-Aware Server Management and Scheduling 31

Algorithm 1. Algorithm for server management.

1 [Parameters]
2 double fp {the predicted failure probability}
3 double Pfail {the probability that ensures the job acceptance}
4 double PMig

fail {the probability that ensures condition 9}
5 double P rmn

fail {the failure probability in the remaining time}
6 integer T {the average job execution time}
7 STATE state = IDLE {server state, initialized with IDLE}
8 upon receive(job)
9 if state = IDLE then job submit(job);

10 upon receive(job, PMig
fail) /* received a migrated job */

11 fp = fail predict(T rmn
job); Pfail = fail expect(Tjob) /* ensure condition 8 */

12 if fp < PMig
fail and fp < Pfail and state = IDLE then return true;

13 else return false;

14 procedure job submit(job)
15 Tjob = time estimate(); fp = fail predict(Tjob); Pfail = fail expect(Tjob);
16 if fp < Pfail then /* ensure positive revenue */
17 job execute(job); state = RUNNING;

18 else if Tjob ≤ T then /* proactive recovery */
19 proactive recovery(job); state = RECOVERY ;
20 else /* wait next job */
21 state = IDLE ;

22 procedure job execute(job)
23 if failed = true then /* reactive recovery */
24 state = MALFUNCTION; return;

25 P rmn
fail = fail predict(Trmn);

26 if P rmn
fail ≥ Pfail then /* negative revenue */

27 compute PMig
fail using 9; reschedule(job, PMig

fail);

28 wait until find another processor
29 migrate(job); proactive recovery(job); state = RECOVERY;

30 procedure fail expect(Tjob)
31 return Pfail using 7;

3.5 Algorithm Description

Algorithm 1 presents the detail description for server management. The migrated job
and other job requests are handled by receive(job, P) and receive(job) respectively. If
it is a migrated job, the server will reply with an affirmative answer if its predicted
failure probability follows both inequality 8 and 9, otherwise with a negative answer
(line 10-13).

We use the function job submit() to decide whether to accept or reject the job. If the
job is rejected and its execution time is less than the average level of job execution time,
activate a recovery operation directly (line 18-19). Otherwise, do nothing but wait for
the next job request (line 21). Function job execute() activates the proactive recovery
after all VMs migrated to other servers because of a sudden higher failure probability
(P rmn

fail ≥ Pfail).

4 Revenue-Driven Scheduling

Since proactive recovery contributes to avoid the possible penalties caused by server
failures, the server management algorithm is able to increase the revenue for cloud

32 L. Zhao and K. Sakurai

Scheduler (Alg. 2)

Server node 1

VMM (Alg. 1)

VM1

Server node 1

VMM (Alg. 1)

VM1VMVM1 VM2 VM3

Server node n

VMM (Alg. 1)

VM1

Server node n

VMM (Alg. 1)

VM1VMVM1 VM2 VM3

)Job Migration

Fig. 5. The scheduling framework

provider. In fact, the revenue could be further increased through collaborative use of
server management and cloud scheduling algorithm. Figure 5 shows the framework.
Algorithm 1 is implemented at the Virtual Machine Monitor (VMM), which takes in
charge of failure estimation, VM migration and proactive recovery. Below, we discuss
how to schedule the VMs for increasing cloud provider’s revenue.

4.1 MaxReliability

As physical servers perform high heterogeneity in failure probability, the probability
of state transition from RUNNING to MALFUNCTION would be different for different
servers (i.e., P03 in Figure 3).

Theorem 2. Suppose server i is more reliable than server j. For performing the same
VM, the expected net revenue yielded by i is greater than j: Rvui

PR > Rvuj
PR.

Proof. Because server i is more reliable than j, it means the probability of state tran-
sition from IDLE to RUNNING, then to TERMINATED for server i is greater than j.
Thus, according to Figure 3, we have P i

10 > P j
10, P i

10P
i
02 > P j

10P
j
02, P i

14 < P j
14, and

P i
03+P i

04 < P j
03+P j

04. Note that, for the predicted failure probability: f i
p = P i

03+P i
04

and f j
p = P j

03 + P j
04.

Suppose the failure detection accurancy is: α = No.ofdetectedfailures/
No.offailures, then P i

03 = (1− α)fp and P i
04 = αfp. As P i

02 + P i
03 + P i

04 = 1, and
regrading Equation 3, we have,

Rvui
PR = APRP

i
10P

i
02 −BPRP

i
10P

i
03 + CPRP

i
10P

i
04 −DPRP

i
14

= P i
10[APR(1− f i

p)− f i
p(BPR(1− α)− CPRα)]−DPRP

i
14

= P i
10[APR − f i

p(APR +BPR(1 − α)− CPRα)]−DPRP
i
14

Because f i
p < f j

p , APR + BPR(1 − α) − CPRα > 0, then APR − f i
p(APR +

BPR(1−α)−CPRα) > APR−f j
p(APR+BPR(1−α)−CPRα). Likewise, because

P i
14 < P j

14, then DPRP
i
14 < DPRP

j
14. Hence, we have Rvui

PR > Rvuj
PR.

Theorem 2 suggests that scheduling VMs on reliable servers could increase cloud
provider’s revenue. Therefore, a natural way of cloud scheduling is always dispatching

Improving Cost-Efficiency through Failure-Aware Server Management and Scheduling 33

an incoming VM to the most reliable server. We call the rule as MaxReliability. Al-
gorithm 2 shows the details: Upon receiving a job by the scheduler, either a new job
or a migrated job, iterate over all servers and predict the probability of failure. Then
dispatch the job to the server with maximum reliability (Line 1-5). Whenever a VM
is completed, because capacity is freed on the host server (e.g., sk), VMs located on
less reliable servers could migrate to sk for increasing revenue. Iterating over all busy
servers (Line 7), we find the job j with least reliability, and j’s capacity requirement
is able to be satisfied by sk available capacity. Then, move j to sk (Line 13). The
process is repeated until sk is full. Note that the migration comes with overhead (i.e.,
Cmig), hence a VM is migrated only when the difference on failure probability, i.e.,
f s,jmin
p − f sk,jmin

p , is greater than a threshold ε (Line 13-14).

Algorithm 2. Algorithm for cloud scheduler: MaxReliability.

input : S {the servers set}
output : schedule for jobs

1 upon receive(job) /* Either a new or a migrated job */
2 for s ∈ S do
3 fs

p = fail predict(Tjob);

4 smax = max{(1− fs
p)};

5 send(job,smax); /* Send the job to the server with max
reliability */

6 upon free(sk) /* Part capacity of sk is freed due to completion
of jobs */

7 flag = 1.0 ;
8 for s ∈ S && s.state == RUNNING, except sk do
9 for job j running on s do

10 f
s,rmnj
p = fail predict(T rmn

j);
11 if flag > f

s,rmnj
p && j.capacity < sk.availablecapacity then

12 flag = f
s,rmnj
p ; jmin = j; /* Find the most fragile job

jmin */

13 if fs,jmin
p − fsk,jmin

p > ε then
14 move jmin to sk; /* Move the job with least reliability to sk

*/

4.2 Combined with Energy-Saving

Let us revisit the equation for computing revenue: Rvui = Prci ·Tvm−Coei−Peni.
To increase the revenue, there are several possible ways regarding the equation. For ex-
ample, cloud provider could increase Rvui through providing flexible pricing functions
(i.e., Prci), reducing execution cost Coei or reducing Peni. Flexible pricing function
has been discussed in the literature [18], [19], [20], and also employed in practice (e.g.,
the spot instance at Amazon). In fact, pricing functions is based on long-term service
providing. For a single VM, after it is submitted, the price is fixed no matter which
pricing functions is applied. Therefore, we do not address the pricing function here, but

34 L. Zhao and K. Sakurai

tend to increase the Rvu by reducing Coei and Peni.
According to equation Coei = (USIOi + Prcegy · Pi) · Tvm, reducing energy cost

(i.e., Pi) is the most likely way to reduce Coei, because USIO belongs to fixed-asset
investment. Thus, we explore to increase cloud provider’s revenue through reducing en-
ergy cost and penalty simultaneously. Fortunately, reducing energy cost does not con-
flict with reducing penalty. Scheduling VMs to reliable servers could avoid penalty,
and consolidating several VMs on a server could reducing the energy cost. A natural
combination of them would be, consolidating VMs on the least number of reliabile
servers. That is, a high reliable server could contribute to reduce the penalty, while con-
solidation is able to reduce energy cost. For example, Mastroianni et al. [21] present a
decentralized solution for VM consolidation. That is, if the CPU utilization of a server
is below certain threshold, VMs on other servers could be migrated to it. While if the
CPU utilization of a server is above certain threshold, VMs on it can be migrated to
other underloaded servers. The improved version with considering penalty cost could
be: if the CPU utilization of a server is below certain threshold, VMs on the least re-
liable and overloaded server could be migrated to it. While if the CPU utilization of a
server is above certain threshold, VMs on it can be migrated to the first available server
with maximum reliabily.

5 Experiments

5.1 Simulation Environment

Server Farm. We simulate a server farm with 20 physical servers, which can provide
seven different types of VM instances, corresponding to the seven types of instances
from Rackspace Cloud Servers [22]. The processing speed of each server is supposed
to be the same, and is initialized with eight cores, with each is of 2.4GHz.

Job. We simulate a large number of jobs ranging from 1000 to 6000, for maximizing
the utilization of all servers. Through this way, the cost for maintaining a server could
be fairly shared among all the VMs deployed on it, and leading to a positive net revenue.
This is also reasonable in practice because cloud providers commonly design policies to
optimize the minimum number of active servers for reducing the energy cost, thereby
resulting in a high utilization at each active server (Mastroianni, Meo, and Papuzzo,
2011; Mazzucco et al., 2010b).

Allowing two instructions in one cycle, the workload of each job is evenly generated
from the range: [1, 6]× 204, 800× 2i million instructions, where 0 ≤ i ≤ 6 and i ∈ Z ,
represents the type of VM instance this job requires.

Scheduling. Jobs are placed on cloud servers using a First-Come-First-Served (FCFS)
algorithm. Scheduling priority is supported, and follows the sequence: migrated job
> failed job > rejected job > unsubmitted job. The rejected or failed jobs will not be
scheduled on the same server at the second time, because it is probably rejected or failed
again.

Improving Cost-Efficiency through Failure-Aware Server Management and Scheduling 35

Failures. Failures are considered from two dimensions. The first dimension concerns
the time when failures occur. In our experiments, failures are injected to servers fol-
lowing a Poisson distribution process with λ = [1, 4]/θ × 10−6, where θ ∈ [0.1, 2].
According to the Poisson distribution, the lengths of the inter-arrival times between
failures follow the exponential distribution, which is inconsistent with the observations
that the time between failures is well modeled by a Weibull or lognormal distribution
[2]. The deviations arise because an attempt to repair a computer is not always suc-
cessful and failures recur a relatively short time later [23]. Implementing a real failure
predictor is out of the range of this paper, and we alternatively consider different failure
prediction accuracy in evaluations.

The second dimension concerns the repair times. If an unexpected failure occurs, the
server turns into a MALFUNCTION state immediately, and followed by recovery oper-
ations. As discussed in [2], the time spent on recovery follows a Lognormal distribution
process, which is defined with a mean value equaling to 90 minutes, and σ = 1.

Price and Server Cost. The prices for all seven types of VM instances are set exactly
the same as the ones from Rackspace Cloud Servers [22], that is Prc = 0.015$× 2i,
where 0 ≤ i ≤ 6 and i ∈ Z .

The capital cost is roughly set at 8000$ per physical server, which is estimated based
on the market price of System x 71451RU server by IBM [24]. The price of electricity
is set at 0.06$ per kilowatt hour. We suppose that the power consumption of an active
server without any running VMs is 140 Watts. Additional power ranging from 10 Watts
to 70 Watts is consumed by VMs corresponding to seven types of VM instances [16].
Suppose a server’s lifetime is five years, and as the IT capital cost takes up 33% to
the total management cost, we roughly spend 4300$ on a physical server per year with
additional energy cost.

As modeling of migration costs is highly non-trivial due to second order effects mi-
grations might have on the migrated service and other running services, we simplify
migration costs as an additional 20% of the unexecuted workload without profit (i.e.,
10% for the original server, and another 10% for the target server). A preliminary at-
tempt on modeling migration cost is given in Breitgand, Kutiel, and Raz (2010).

Penalty. If a SLA is breached due to the provider’s failing to complete jobs, the cus-
tomer gets compensation by a rather high ratio of fine, which ranges from 10% to 500%
of the user bill in the experiments (i.e., PSLA ∈ [0.1, 5]). This is because SLA viola-
tions cause not only direct losses on revenue but also indirect losses, which might be
much more significant (e.g., in terms of provider reputation).

5.2 Results

We choose the evaluation approach by comparing our proposed proactive-reactive model
with the original reactive model. Experiments are conducted across a range of op-
erating conditions: number of jobs, failure frequency (θ), PSLA, and the accuracy of
failure prediction. Accuracy implies the ability of the failure prediction methods, and
is presented by both the false-negative (fn) and false positive (fp) ratio. Denote by

36 L. Zhao and K. Sakurai

0

20000

40000

60000

80000

100000

120000
To

ta
l N

et
 R

ev
en

ue
 ($

)

Total number of jobs

Reactive
Proactive_Reactive
PR+MaxReliability

(a)

11000

12000

13000

14000

15000

16000

17000

18000

19000

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

To
ta

l N
et

 R
ev

en
ue

 ($
)

Theta (Possion distribution)

Reactive
Proactive+Reactive
PR+MaxReliability

(b)

1000
3000
5000
7000
9000
11000
13000
15000
17000
19000

0.
1

0.
3

0.
5

0.
7

0.
9

1.
25

1.
75

2.
25

2.
75

3.
25

3.
75

4.
25

4.
75

To
ta

l N
et

 R
ev

en
ue

 ($
)

PSLA

Reactive
Proactive_Reactive
PR+MaxReliability

(c)

16800

17000

17200

17400

17600

17800

18000

18200

18400

0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95

To
ta

l N
et

 R
ev

en
ue

 ($
)

False Negative Ratio

Reactive
Proactive_Reactive
PR+MaxReliability

(d)

To
ta

l N
et

 R
ev

en
ue

 ($
)

False Positive Ratio

Reactive
Practive+Reactive
PR+MaxReliability

(e)

Fig. 6. The total net revenue: (a) under different No. of jobs; (b) under different qs (failure fre-
quency); (c) under different SLA penalty percentages; (d) under different levels of false-negative
ratio; (e) under different levels of false-positive ratio

No(FN) the number of false-negative errors, No(TP) the number of true-positive
predictions, and No(FP) the number of false-positive errors, then we have fn =

No(FN)
No(FN)+No(TP) and fp = No(FP)

No(FP)+No(TP) . Unless otherwise stated, the parameters
are set with jobnumber = 1000, θ = 1, PSLA = 0.1, fn = 0.25 and fp = 0.2. Each
experiment is repeated five times and the results represent the corresponding average
values.

Figure 6 shows the total net revenue obtained by the reactive recovery, proactive-
reactive recovery (PR) and PR+MaxReliability (PRM) from executing jobs under dif-
ferent operating conditions. Note that random selection is employed in both reactive re-
covery and proactive-reactive recovery (PR) for dispatching VMs to servers, while PRM
uses MaxReliability for scheduling. Generally, net revenue yielded by the proactive-
reactive model is greater than the reactive model, which is consistent with our analysis
in Theorem 1. However, compared with random selection, MaxReliability does not yield
much improvement on revenue. This is because, we have submitted so many VMs that
nearly all servers are fully occupied. Thus the difference on revenue between them is
not apparent. In particular, Figure 6(a) shows the net revenue as a function of the num-
ber of jobs. The difference on net revenue is increasing over the number of jobs, which
is reasonable because more jobs come with more revenue.

Figure 6(b) shows the net revenue as a function of failure frequency. By the definition
of λ, we know failure frequency decreases as θ increases. As shown in the figure, the
PR and PRM model could yield more net revenue than the reactive model when the
failure frequency is high. In particular, the proactive-reactive model yields 26.8% net
revenue improvement over the reactive model when setting θ = 0.1. And an average

Improving Cost-Efficiency through Failure-Aware Server Management and Scheduling 37

improvement of 11.5% is achieved when θ ≤ 0.5. This suggests that the proactive-
reactive model makes more sense in unreliable systems. Furthermore, the proactive-
reactive model also outperforms the reactive model in rather reliable systems where
θ > 0.5.

Figure 6(c) shows that the PR and PRM model yields a greater net revenue than
the reactive model under different PSLA values. Net revenue yielded by the proactive-
reactive model does not decline much because most penalty costs are avoided by possi-
ble proactive recovery and VM migrations. Whereas the reactive model has to pay the
penalty when failure occurs, and penalty cost increases as PSLA increases.

Figure 6(d) shows the net revenue under different levels of false-negative ratio rang-
ing from 0.05 to 0.7. With the increase of false-negative error, there is a slight decrease
on the net revenue by the PR and PRM model, whereas the reactive model fluctuates
around a certain level because the reactive model does not employ failure prediction
and the fluctuation is due to the random values used in the experiments. Our proactive-
reactive model averagely yields 3.2% improvement on the net revenue over the reactive
model, and performs similarly with reactive model when fn ≥ 0.7.

Figure 6(e) shows the impact on net revenue from the false-positive ratio under a
fixed fn = 0.25. Net revenue obtained from PR and PRM model decreases gradually
over the false positive ratio. Moreover, the differences on revenue between proactive-
reactive and reactive model decreases as the false-positive ratio increases. This is be-
cause a high false-positive ratio results in a large number of meaningless migrations,
which come with migration costs. Figure 6(d) and Figure 6(e) suggest that our algorithm
still performs well with even modest prediction accuracy (i.e., fn ≥ 0.5 or fp ≥ 0.5).

6 Conclusions

In this paper, we address the problem of cost-efficient fault management, and present
revenue driven server management and scheduling algorithm for cloud systems. Using
the algorithms, cloud providers could obtain a significant improvement on net revenue
when serving the same jobs. In particular, our proposal could yield at most 26.8%,
on average 11.5% net revenue improvement when the failure frequency is high. In the
future, we will study more scheduling algorithms working together with the proposed
server management model. Our goal is to maximize the net revenue for cloud providers
without affecting the performance.

References

1. Bobroff, N., Kochut, A., Beaty, K.: Dynamic Placement of Virtual Machines for Managing
SLA Violations. In: 10th IFIP/IEEE International Symposium on Integrated Network Man-
agement, pp. 119–128 (2007)

2. Schroeder, B., Gibson, G.A.: A large-scale study of failures in high-performance computing
systems. In: DSN 2006, pp. 249–258 (2006)

3. Hoelzle, U., Barroso, L.A.: The Datacenter as a Computer: An Introduction to the Design of
Warehouse-Scale Machines, 1st edn. Morgan and Claypool Publishers (2009)

4. Dean, J.: Experiences with mapreduce, an abstraction for large-scale computation. In: PACT
2006, pp. 1–6. ACM (2006)

38 L. Zhao and K. Sakurai

5. Vishwanath, K.V., Nagappan, N.: Characterizing cloud computing hardware reliability. In:
SoCC 2010, pp. 193–204 (2010)

6. Nightingale, E.B., Douceur, J.R., Orgovan, V.: Cycles, cells and platters: an empirical anal-
ysisof hardware failures on a million consumer pcs. In: EuroSys 2011, pp. 343–356. ACM
(2011)

7. Javadi, B., Kondo, D., Vincent, J.M., Anderson, D.P.: Discovering statistical models of avail-
ability in large distributed systems: An empirical study of seti@home. IEEE Transactions on
Parallel and Distributed Systems 22, 1896–1903 (2011)

8. Fu, S., Xu, C.Z.: Exploring event correlation for failure prediction in coalitions of clusters.
In: SC 2007, pp. 41:1–41:12. ACM (2007)

9. Pinheiro, E., Weber, W.D., Barroso, L.A.: Failure trends in a large disk drive population. In:
FAST 2007, pp. 17–28 (2007)

10. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods. ACM Com-
put. Surv. 42, 10:1–10:42 (2010)

11. Koomey, J., Brill, K., Turner, P., et al.: A simple model for determining true total cost of
ownership for data centers. Uptime institute white paper (2007)

12. Patel, C.D., Shah, A.J.: A simple model for determining true total cost of ownership for data
centers. Hewlett-Packard Development Company report HPL-2005-107 (2005)

13. Fitó, J.O., Presa, I.G., Guitart, J.: Sla-driven elastic cloud hosting provider. In: PDP 2010,
pp. 111–118 (2010)

14. Macı́as, M., Rana, O., Smith, G., Guitart, J., Torres, J.: Maximizing revenue in grid markets
using an economically enhanced resource manager. Concurrency and Computation Practice
and Experience 22, 1990–2011 (2010)

15. Mazzucco, M., Dyachuk, D., Deters, R.: Maximizing cloud providers’ revenues via energy
aware allocation policies. In: IEEE CLOUD 2010, pp. 131–138 (2010)

16. Mazzucco, M., Dyachuk, D., Dikaiakos, M.: Profit-aware server allocation for green internet
services. In: MASCOTS 2010, pp. 277–284 (2010)

17. Abraham, A., Grosan, C.: Genetic programming approach for fault modeling of electronic
hardware. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1563–1569
(2005)

18. Marbukh, V., Mills, K.: Demand pricing & resource allocation in market-based compute
grids: A model and initial results. In: ICN 2008, pp. 752–757 (2008)

19. Zheng, Q., Veeravalli, B.: Utilization-based pricing for power management and profit opti-
mization in data centers. JPDC 72, 27–34 (2012)

20. Macı́as, M., Guitart, J.: A genetic model for pricing in cloud computing markets. In: SAC
2011, pp. 113–118. ACM, New York (2011)

21. Mastroianni, C., Meo, M., Papuzzo, G.: Self-economy in cloud data centers: statistical as-
signment and migration of vms. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011,
Part I. LNCS, vol. 6852, pp. 407–418. Springer, Heidelberg (2011)

22. Rackspace (2012), http://www.rackspace.com (Online; accessed January 31, 2012)
23. Lewis, P.A.: A branching poisson process model for the analysis of computer failure patterns.

Journal of the Royal Statistical Society, Series B 26, 398–456 (1964)
24. IBM: Ibm system x 71451ru entry-level server (2012), http://www.amazon.com/

System-71451RU-Entry-level-Server-E7520/dp/B003U772W4

http://www.rackspace.com
http://www.amazon.com/System-71451RU-Entry-level-Server-E7520/dp/B003U772W4
http://www.amazon.com/System-71451RU-Entry-level-Server-E7520/dp/B003U772W4

Designing an IPv6-Oriented Datacenter with IPv4-IPv6
Translation Technology for Future Datacenter

Operation

Keiichi Shima1, Wataru Ishida2, and Yuji Sekiya2

1 IIJ Innovation Institute Inc.
2 The University of Tokyo

Abstract. Many big network operators have already deployed IPv6. Most of the
popular client operating systems are ready to use IPv6. The last part is the service
providers. It is a kind of a chicken-and-egg problem. If services are not provided
over IPv6, then users will not shift to IPv6, and if users do not use IPv6, then the
service providers do not deploy IPv6. However, considering the global trend of
shifting to IPv4/IPv6 dual-stack world, it is mandatory for service providers to
accept all three types of users, 1) IPv4-only users who will remain in the Internet
for long time, 2) IPv4/IPv6 dual-stack users who will be a dominant users in near
future, and 3) IPv6-only users who will appear in the future as IPv6 deployment
progresses. In this paper, we propose a recommended operation model for IaaS
operators to soft-land from IPv4-only operation to IPv6-only operation without
losing existing IPv4 users. The proposed operation utilizes a wide area L2 net-
work and IPv4-IPv6 translation software for backward compatibility. With our
proposal, we can reduce the use of IPv4 addresses in the cloud backend network
by shifting to IPv6-only operation, and provide high-performance, scalable, and
redundant address translation software suitable for the IPv6-only IaaS system that
can be one of the reference operation models of future datacenters.

Keywords: Cloud Middleware Frameworks, IaaS, Scalability, Redundancy, Cost
Reduction: IPv6, IPv4 Compatibility.

1 Introduction

The computing power of computers is growing every year. However, many studies show
that there is an obvious limitation of computing power if we stick one single processor
system. Because of this reason, cloud computing technologies are getting attention of
many people. Researchers are now investigating its usage, application model, and op-
eration techniques to utilize the limited resources more effectively. At the same time,
virtualization technologies that enable us to slice one physical computer into several
virtual computer resources to suppress idle resources as much as possible. With the vir-
tualization technologies, it is expected that we will have a huge computer network that
includes far larger number of virtual computers than the physical computers.

The network protocol used to interconnect computers has been the IPv4 protocol
for long time. However, because of recent depletion of IPv4 addresses, the successor
protocol, IPv6, is now being deployed. Since we can still use IPv4 addresses and its

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 39–53, 2013.
c© Springer International Publishing Switzerland 2013

40 K. Shima, W. Ishida, and Y. Sekiya

network even though we do not have new IPv4 addresses, the future network will be a
mixed network of IPv4 and IPv6 for many years until IPv4 disappears completely.

Service providers must support both IPv4 and IPv6, because service users will be
mixed users of IPv4-only users, IPv4/IPv6 dual-stack users, and IPv6-only users in the
future. Although IPv4 and IPv6 are technically quite similar except the size of their
address space, however, these protocols do not have interoperability because their pro-
tocol header formats are completely different. The operators have to manage two similar
networks. That is a duplicated effort.

If we can manage and operate a single stack network for the service backend nodes
and place dual-stack nodes only as the entry points to the services, then we can reduce
the operation cost to manage two duplicated networks. We can also quickly follow the
technology advance of the network by focusing on only one single protocol stack. In
this paper, we focus on a virtual computer resource management environment (IaaS, In-
frastructure As A Service) and propose a system whose backend network is operated by
IPv6-only with dual-stack public nodes as service entry points using IPv4-IPv6 protocol
translator software. This kind of IPv4-IPv6 protocol translator is not a new technology.
It was proposed almost as same time as IPv6 was proposed. However, such a translator
is basically assuming to map one IPv4 address to multiple IPv6 addresses, because its
main usage is to provide IPv4 connectivity to IPv6 only nodes originally. This means
the software tends to become complicated because it has to keep track on the address
mapping status and session status among multiple IPv6 addresses. It also has a scala-
bility and redundancy problem because it needs to manage many mapping information
and session status and this status information is hard to share and synchronize among
multiple translator nodes. Our proposed system particularly insists on one-to-one ad-
dress mapping which doesn’t have problems addressed above, with the assumption that
the translator is used as a part of an IaaS system. With this compromise, we can design a
realistic IaaS system without having problems of existing IPv4-IPv6 translation system
as described before and realize IPv6-only backend service operation.

2 Related Works

2.1 IaaS Model

Needless to say, most of the current service providers are using IPv4 as their base IP
protocol to build services. As IPv6 is getting popular, some of them are now considering
to supporting dual-stack service using translators. Although there are several transition
scenarios to move from IPv4 to IPv6 [1], they basically use IPv4 for server nodes and
provide IPv6 connectivity to IPv6 clients using translator technology. This is the biggest
difference from our approach. We use IPv6 addresses for server nodes and provide dual
stack connectivity to client nodes. Considering that the IPv6 clients are going to grow
in the future, focusing on IPv6 and providing IPv4 as an additional service seems the
right choice.

The traditional translation operation is shown in section 2.1 of Chen’s paper [2]. We
think that the model has several drawbacks. First, since it uses IPv4 for their backend
service networks, it may face the IPv4 depletion problem. Second, if they use private
IPv4 address space to avoid the IPv4 depletion issue, they may face IPv4 NAT traversal

Designing an IPv6-Oriented Datacenter with IPv4-IPv6 Translation Technology 41

issues for servers they are operating in their private networks. Third, if they use NAT
for their servers, they have to operate two NAT services, one for IPv4 private addresses,
and the other for IPv6-IPv4 addresses. In our proposed model, IPv6 services are pro-
vided natively, and IPv4 services are provided using translation. Detailed discussion is
provided in section 3.1.

2.2 Translators

Discussion to develop technologies to bridge IPv4 and IPv6 was started as early as when
IPv6 protocol designers decided not to provide IPv4 backward compatibility in IPv6.
Waddington and Chang summarized IPv4-IPv6 transition mechanisms in their paper
[3]. From the viewpoint of translation mechanisms, we can classify these transition
technologies into three approaches. The first approach is providing interoperability in
the application layer, the second approach is relaying data in the transport layer, and the
last is converting an IP header in the IP layer.

The first approach, the application layer approach is performed by proxy server soft-
ware designed for each application protocol that needs interoperability between IPv4
and IPv6. The proxy server will be located at the boundary of IPv4 and IPv6 net-
works and accept specific application requests (e.g. web requests) from client nodes.
The proxy server interprets the request contents, build a new request for the destination
server, and send it using a proper IP protocol. The response from the server node is
intercepted and resent by the proxy server as well. Since the proxy server understands
the application protocol completely, this approach can be most flexible compared to the
other approaches. On the other hand, development per application protocol is required
which will increase development and operation cost. This approach is mostly used when
we only need complex context processing in between IPv4 and IPv6 networks, since
many services can be interoperable using the rest of the approaches.

In the second approach, the transport layer approach, the relay server located in be-
tween the IPv4 and IPv6 networks terminates incoming connections from clients at
the socket level, and starts new transport connections to the destination server on the
other side of the network. The well-known mechanisms of this approach are, for exam-
ple, SOCKS64 [4,5] and Transport Relay Translator [6]. In SOCKS64, the client side
SOCKS64 library replaces the DNS name resolution and socket I/O functions to inter-
cept all the client traffic and forward to a SOCKS64 server. This mechanism requires
client applications to be updated to use the SOCKS64 library, however, once the library
is replaced, applications do not need to pay any attention to IPv4-IPv6 translation is-
sues. The Transport Relay Translator does not require any update to client applications.
Instead, the mechanism assumes that clients use specially crafted IPv6 addresses in
which IPv4 address of the server is embedded, when IPv6 clients are going to connect
to IPv4 servers. The relay server terminates the incoming IPv6 connections from client
nodes and starts new connections to the destination servers using the server address ex-
tracted from the special IPv6 address. Such special IPv6 addresses are usually provided
by the site level special DNS server in the client site that supports DNS64 [7].

The third approach, the IP layer header translation is similar to the NAT technology
used in IPv4. Examples of this approach are NAT-PT [8] and NAT64 [9]. In this ap-
proach, the translation server does not need to terminate connections between clients

42 K. Shima, W. Ishida, and Y. Sekiya

and servers. The address fields and other header fields of packets reached to the transla-
tor node will be translated based on the predefined header transformation rules between
IPv4 and IPv6.

These related technologies were originally designed for the situation that there are
IPv4 server nodes in the Internet, and IPv6 client nodes are going to connect to those
IPv4 servers. It is assumed that one or a few IPv4 addresses are allocated to the transla-
tion server, and many IPv6 client nodes share the IPv4 addresses. However, the system
discussed in this paper assumes the opposite case, that is, there are IPv6 server nodes
in a cloud system, and existing IPv4 or IPv6 client nodes are going to connect to the
IPv6 servers. In this case, we cannot share IPv4 addresses between many IPv6 servers
without any modification to the IPv4 client side. Because of this nature, we have to
map one IPv4 address to one IPv6 server eventually. Of course, the previous works
and proposed mechanisms can do the same scenario in theory, however, there are few
implementations that can support the case we are assuming.

There are some evaluation studies in these translation technologies [10,11]. However,
since the performance of the mechanisms highly depends on how the mechanisms are
implemented, we need to compare whenever we design a new translation software.

There are several commercial devices providing IPv4-IPv6 translation function. Most
of them are targeting a translation service of internal IPv6 client connection requests
generated inside the customer’s network, to global IPv4 servers. Different from the ex-
isting translation products, our approach targets on service provider side and provides a
function for IPv4 legacy clients to connect servers running with IPv6 only.

Our approach runs without keeping any state information of connections, while most
of translator products are stateful to share IPv4 addresses among IPv6 clients. Our pro-
posal does not share IPv4 addresses but have one to one mapping between an IPv4
address and an IPv6 address. Because of this difference, our approach is implemented
as stateless service. That makes it easier to place multiple translators at several network
exit points and distribute traffic load.

In this paper, we propose a new IaaS system design and IPv4-IPv6 translator design
and implementation that only use IPv6 as its service backend network, providing dual-
stack service to both IPv4 and IPv6 clients. We also give the performance measurement
results of the system.

3 Design and Implementation of the IaaS System and the
Translation Software

In this section, we describe the overview of the proposed IaaS system and design of the
IPv4-IPv6 header translation software.

3.1 Design and Implementation of the IaaS System

The system we are targeting is an IaaS system that provides virtual computers as a
unit of resources using virtualization technology. Service integrators can use virtual
computers as their service components by requesting the IaaS system to slice physi-
cal computers to make virtual computers whenever needed. The actual configuration

Designing an IPv6-Oriented Datacenter with IPv4-IPv6 Translation Technology 43

of a service varies in each service, however, one service usually composed of several
computers, such as a web frontend node, load balancers, a database node, and so on.
Services such as a distributed storage may need larger number of virtual computers as a
backend system. When we consider providing a dual-stack service to users, one possible
implementation is building the IaaS system as a complete dual-stack system. However,
as we discussed in section 1, we will have a duplicated effort to maintain two different
network stacks, which they have almost same functions. Since the service users usually
only see the frontend nodes, it will be sufficient if we can make those frontend nodes
dual-stack. The communication between the frontend nodes and backend nodes do not
necessarily be dual-stack. By focusing only one protocol stack inside the IaaS system,
the network design will be simpler that will benefit the IaaS service provider, and the
service development cost and testing cost can also be reduced that will benefit service
providers.

In this proposed system, we assume an IPv4 address and an IPv6 address are mapped
one to one. Because the proposed system discussed in this paper is for IaaS providers
providing server resources to their users, who are PaaS providers, SaaS providers,
and/or ASPs, we cannot design the system to share one IPv4 address by several IPv6
server nodes. We also don’t consider implementing this requirement using application
level proxy solution, since service providers have different requirements for their ser-
vices, we cannot limit the communication layer function to application layers. This may
be a problem considering that the IPv4 address is scarce resource. However, we need
to use IPv4 addresses anyway if we want to support IPv4 clients. And also we need
to map addresses one to one if we want to provide services without any modification
on the client side. Our best effort to handle this issue is that we do not allocate IPv4
addresses to backend nodes to avoid non-necessary IPv4 use.

The version of an IP protocol used in the backend network can be either IPv4 or
IPv6. In the implementation shown in this paper, we use IPv6 as an internal protocol
for the backend network considering the trend of IPv6 transition of the whole Internet.

Fig. 1 depicts the overview of the proposed system. We said that the frontend nodes
provide dual-stack services to the client before, however precisely speaking, these fron-
tend nodes do not have any IPv4 addresses. The mapping information between IPv4
and IPv6 addresses are registered to each IPv4-IPv6 translator node and shared by all
the translator nodes. Since the mapping is done in the one to one manner, no translator
nodes need to keep session information of ongoing communication. They can just trans-
late IP packets one by one. This makes it possible to place multiple translator nodes
easily to scale out the translation service when the amount of the traffic grows. This
feature also contributes robustness of the translation system. When one of the transla-
tor nodes fails, we can just remove the failed node from the system. Since there is no
shared session information among translator nodes, the service is kept by the rest of the
translator nodes without any recovery operation.

Fig. 2 shows the overview of the actual system we are operating. The virtual machine
resource management system located at the bottom of the figure is the WIDE Cloud
Controller (WCC) [12] developed by the WIDE project. The two network operation
centers (NOC) located at Tokyo and Osaka are connected by a wide area layer 2 network
technology. The layer 2 network is a 10Gbps fiber line dedicated to the WIDE project

44 K. Shima, W. Ishida, and Y. Sekiya

IPv4/IPv6
Internet

IPv4-IPv6
translator nodes

Frontend
nodes

Backend
nodes

Proposed
IaaS
system

IP
v4
/IP
v6

IP
v6
-o
nl
y

Fig. 1. The overview of the proposed IaaS system

WIDE
backbone

IPv4/IPv6
Internet

IaaS service nodes

Osaka
NOC

Tokyo
NOC

IPv4/IPv6
translator
nodes

Frontend and
backend nodes

Wide area
L2 network

OSPF
routing

Fig. 2. The actual network configuration of the proposed IaaS system implemented and operated
in the WIDE project operation network

network operation. There are two network segments in Tokyo and Osaka NOC whose
network address spaces are same. These two layer 3 networks are connected by the
layer 2 link using VLAN technology. The translator nodes are placed at each location.
The routing information of the IPv4 addresses used to provide IPv4 connectivity to IPv4
clients is managed using the OSPFv3 routing protocol in the WIDE project backbone
network. Since all the translator nodes advertise the same IPv4 address information
using the equal cost strategy, incoming traffic is distributed based on the entry points
of the incoming connections. The aggregated IPv4 routing information is advertised to
the Internet using the BGP routing protocol. Any incoming IPv4 connection requests
from the Internet are routed to the WIDE backbone based on the BGP information,
routed to one of the translator nodes based on the OSPFv3 routing information, and
finally routed to the corresponding virtual machine based on the static mapping table
information stored in the translator nodes. The translation mechanism is described in
section 3.2. Failure of either Osaka or Tokyo NOC will result in failure of the OSPFv3
routing information advertisement from the failed NOC, however, thanks to the nature
of a routing protocol, and one to one stateless IPv4-IPv6 mapping mechanism, the other
NOC and translator will continue serving the same address space to the Internet.

Designing an IPv6-Oriented Datacenter with IPv4-IPv6 Translation Technology 45

Fig. 3. IPv4-IPv6 header translation procedure

3.2 Design and Implementation of the Translator Software

The server nodes in the IaaS backend system will see all the communication from their
clients as IPv6 connections, since the backend system is operated in IPv6 only. All the
IPv4 traffic from clients are intercepted by the translator nodes and converted to IPv6
traffic. Fig. 3 shows the translation procedure used in the translator software.

IPv4 address information bound to IPv6 addresses of servers is stored in the mapping
table. Based on the table, the destination address of the IPv4 packet from client nodes
is converted to the proper IPv6 server address. The source address of the IPv6 packet is
converted to a pseudo IPv6 address by embedding the IPv4 address of the client node
to the lower 32-bit of the pseudo IPv6 address. The pseudo IPv6 address is routed to
the translator node inside the backend network. The reply traffic from the server side is
also converted with the similar but opposite procedures.

The mechanism has been implemented using the tun pseudo network interface device
that is now provided as a part of the basic function of Linux and BSD operating systems,
originally developed by Maxim Krasnyansky1. The tun network interface can capture
incoming IP packets and redirect them to a user space program. The user space program
can also send IP packets directly to the network by writing the raw data of the IP packets
to the tun interface. The translator nodes advertise the routing information of the IPv4
addresses in the mapping table to receive all the traffic sent to those IPv4 addresses.
The incoming packets are received via the tun network interface and passed to the user
space translator application. The translator performs the procedure described in Fig. 3
to translate the IPv4 packet to IPv6 packet. The converted IPv6 packet is sent back to
the tun network interface and forwarded to the real server that is running with IPv6
address only.

For the reverse direction, the similar procedure is applied. Since the translator nodes
advertise the routing information of the pseudo IPv6 address that includes the IPv4
address of the client node is advertised to the IaaS backend network, the translator
nodes receive all the reverse traffic. The nodes convert those IPv6 packets into IPv4
packets using the embedded IPv4 client address and mapping table information, and
forward to the original IPv4 client.

1 http://vtun.sourceforge.net/tun/

http://vtun.sourceforge.net/tun/

46 K. Shima, W. Ishida, and Y. Sekiya

Fig. 4. RTT measurement in case of failure of a translator

This translator software map646 is published as open source software [13], and any-
one can use it freely.

4 System Evaluation

We implemented the proposed IaaS system as a part of the WIDE project service net-
work as shown in Fig. 2. By focusing on IPv6-only operation, we could be free from
IPv4 network management.

For the redundancy, we located two translator nodes in different locations of the
WIDE project core network. We sometimes stop one of them for maintenance. In that
case, the other running node is working as a backup node. We confirmed that the redun-
dancy mechanism is working automatically in a real operation.

The incoming traffic to IPv4 addresses are load-balanced based on the BGP and
OSPFv3 information. For the outgoing traffic, currently a simple router preference
mechanism is used to choose an upstream router from IPv6 servers. We are consider-
ing using more advanced traffic engineering methods, such as destination prefix based
routing in near future.

Fig. 4 shows the RTT measurement result from an IPv4 client to an IPv6 server.
Initially, both translator nodes are running. At time 35, we stopped the router advertise-
ment function of translator in Tokyo. The traffic from outside to the cloud network still
goes to Tokyo node, but the returning traffic will be routed to Osaka. At around time
65, we stopped routing function of the Tokyo node. After this point, all the traffic goes
to Osaka and returns from Osaka. We restarted the routing function of Tokyo node, and
restarted router advertisement at Tokyo node at around time 90. Finally, all the traffic
came back to go through Tokyo node.

5 Performance Evaluation

The obvious bottleneck of the system is the translator nodes where all the traffic must go
through with them. This section shows the evaluation result of the translation software.

Designing an IPv6-Oriented Datacenter with IPv4-IPv6 Translation Technology 47

Fig. 5. The four configurations used in performance evaluation

Table 1. Specification of nodes

Client/Server Translator/Router
CPU Core2 Duo 3.16GHz Xeon L5630 2.13GHz × 2
Memory 4GB 24GB
OS Linux 3.0.0-12-server Linux 3.0.0-12-server
NIC Intel 82573L Intel 82574L

5.1 Translation Performance

The performance evaluation is done with the four different configurations shown in Fig.
5. The configuration 1 and 2 (C1 and C2) are the translation cases using our translator
software. Configuration 2 (C2) and 3 (C3) use normal IPv4 and IPv6 forwarding mech-
anisms to compare the translation performance with no translation cases.

Evaluation is done using two methods, one is the ping program to measure RTT, and
the other is the iperf program to measure throughput. All the results in this experiment
show the average value of 5 measurement tries2. The computer nodes used in this per-
formance test are shown in Table 1, and all the tests were performed locally by directly
connecting 3 computers as shown in Fig. 5.

Table 2. RTT measurement result using the ping program

Case C1 C2 C3 C4
RTT (ms) 0.45 0.43 0.36 0.36

Table 2 and Fig. 6 show the result of the RTT measurement result and the TCP
throughput measurement result respectively. The throughput values were 923.8Mbps in
C1, 922.8Mbps in C2, 938.0Mbps in C3, and 925.8Mbps in C4.

2 We didn’t record standard deviation of these tries, since the results were stable.

48 K. Shima, W. Ishida, and Y. Sekiya

800

835

870

905

940

C1 C2 C3 C4

Th
ro

ug
ht

pu
t (

M
bp

s)

Fig. 6. TCP throughput measurement using the iperf program

0

225

450

675

900

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (M

bp
s)

Specified transfer rate (100Mbps)

C1
C2
C3
C4

Fig. 7. UDP throughput measurement using the iperf program

Fig. 7 shows the result of the UDP throughput measurement test. We changed the
transmission rate of the sender side from 100Mbps to 1000Mbps with 100Mbps step,
and measured how much throughput was achieved at the receiver side. The maximum
throughput values were 786.0Mbps in C1, 802.0Mbps in C2, 802.0Mbps in C3, and
802.0Mbps in C4.

5.2 Comparison with Related Methods

In this section, we compare the translation performance of map646 to linuxnat64 [14]
which is one of the NAT64 implementations. The main usage of NAT64 is to provide
access to IPv4 servers from IPv6-only nodes. Because of the difference of the usage
scenario, we located a server in the IPv4 network side, and located a client in the IPv6
network side in this test (the C2 case). This is opposite to our proposed IaaS usage,
however we think the test can give us meaningful result in the sense of performance
comparison. In this test, we used Linux 2.6.32 instead of 3.0.0-12-server because lin-
uxnat64 did not support Linux version 3 when we performed this test. There is no big
difference of IPv4/IPv6 forwarding performance between Linux version 2 and 3. Un-
fortunately, the development of linuxnat64 is discontinued, we cannot compare them in

Designing an IPv6-Oriented Datacenter with IPv4-IPv6 Translation Technology 49

800

835

870

905

940

map646 linuxnat64
Th

ro
ug

hp
ut

 (M
bp

s)

Fig. 8. TCP throughput comparison of map646 and linuxnat64

0

250

500

750

1000

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (M

bp
s)

Specified transfer rate (100Mbps)

map646
linuxnat64

Fig. 9. UDP throughput comparison of map646 and linuxnat64

Linux version 3 environment. We are planning to try different kernel-based translators
in the future.

Table 3 and Fig. 8 show the RTT measurement result and the TCP throughput mea-
surement result respectively. The throughput values were 903.2Mbps in the map646
case, and 879.8Mbps in the linuxnat64 case. Fig. 9 is the result of the UDP throughput
measurement. The maximum throughput values were 943.0Mbps in the map646 case,
and 943.0Mbps in the linuxnat64 case.

5.3 Throughput in 10Gbps Environment

10Gbps network interface is now being more popular and popular. It is worth know-
ing how the proposed user space translation mechanism behave in such a high speed
network environment. Fig. 10 is the result of TCP throughput measurement using In-
tel Ethernet Converged Network Adapter X520-SR2. We observed the map646 could
only achieve 1.32Gbps in C1 and 1.96Gbps in C2 case, while IPv4 and IPv6 native
forwarding could achieve 8.96Gbps and 9.26Gbps respectively.

50 K. Shima, W. Ishida, and Y. Sekiya

Table 3. RTT comparison of map646 and linuxnat64

Case map646 linuxnat64
RTT (ms) 0.55 0.39

0

2.5

5.0

7.5

10.0

C1 C2 C3 C4

Th
ro

ug
hp

ut
 (G

bp
s)

Fig. 10. TCP throughput comparison over 10Gbps network

6 Discussion

Based on the observation in section 4, we could consider the proposed IaaS system
could reduce the maintenance cost, achieve redundancy and scalability.

For the performance, as shown in Fig. 2, the RTT degradation is around 0.07ms to
0.09ms. This is reasonable because map646 is implemented as a user space program
while IPv4 and IPv6 forwarding are implemented inside kernel. The other potential
reason of the degradation is a mapping entry lookup overhead. In this experiment, we
only defined two mapping entries in map646. To evaluate the scalability of the mapping
entry lookup mechanism, we performed a simulation. Fig. 11 shows the simulated result
of the lookup and address conversion overhead for different number of mapping entries.
In our implementation, the lookup mechanism uses a hash table and the size of the table
is 1009. From the magnified part in Fig. 11, we can see the table lookup and address
conversion is done in almost constant time when the size of the mapping entries is less
than 10000. When the size of the table grows, the lookup and conversion time grows
linearly as can see in the entire figure in Fig. 11. The lookup and conversion overhead
of one entry is around 2 μs when there are 128 thousands of mapping entries. This value
is enough small that can be ignored compared to the RTT degradation value. However
we agree that the real measurement of the performance degradation with many mapping
entries is an important topic, and it is one of our future works.

The forwarding performance of map646 is 1.5% to 1.6% worse than the normal
forwarding case in the TCP case, and 2.0% in the UDP case. We actually did not see a
big degradation in both TCP and UDP cases in the 1Gbps network environment. This
means that the translation itself is enough fast to process all the incoming packets. We
can conclude that the performance of the map646 translator software is acceptable for
the real operation.

From Fig. 8 and 9, we can see almost no degradation compared to linuxnat64 imple-
mentation. Map646 achieved even better performance than linuxnat64 in the TCP case.
We expected a slight degradation in the map646 case, since linuxnat64 is implemented

Designing an IPv6-Oriented Datacenter with IPv4-IPv6 Translation Technology 51

Fig. 11. Simulated result of mapping table lookup and address conversion overhead

as a kernel module while map646 is a user space program, but the result did not show
any big difference. This result shows that the performance highly depends on how the
software is implemented.

We then measured the throughput using 10Gbps network environment, which is not
popular at this moment but is believed to be deployed in near future. As shown in Fig.
10, the throughput of map646 was capped around 1.8Gbps. The bottleneck is packet
coping part between the kernel and user space, implemented using the tun network in-
terface. Two possibles solutions are, 1) designing a high performance packet read/write
mechanism for user space, or 2) implementing the translation part in the kernel.

We are actually operating several web servers as a part of our daily operation. The
examples of those servers are the WIDE project web server3, the web server of the
Graduate School of Information Science and Technology at the University of Tokyo
Japan4, the DNS server for the wide.ad.jp domain, the web server for the Internet

3 http://www.wide.ad.jp/
4 http://www.i.u-tokyo.ac.jp/

http://www.wide.ad.jp/
http://www.i.u-tokyo.ac.jp/

52 K. Shima, W. Ishida, and Y. Sekiya

Conference5, the KAME project web server6, and so on. The real operation of these
servers also proves the system usability.

Finally we note some of the concerns of the proposed system. This proposed system
requires the same number of IPv4 addresses as the frontend server nodes. This is a trade-
off between backward compatibility and IPv4 address usage efficiency. When IPv4 be-
comes a minor protocol, then probably more efficient IPv4 address sharing mechanisms
for server nodes may be deployed. The other concern is that since the proposed mech-
anism translates addresses, server nodes may require additional security considerations
such as filtering. When writing down filter rules, the server operators need to pay atten-
tion to the pseudo IPv6 address space that covers the entire IPv4 address space.

7 Conclusions

In this paper, we proposed a new operation model for IaaS service providers to adapt
the future IPv6 Internet. In the proposed system, we suggest the IaaS service providers
should focus on a single stack operation as their backend network system. That will
decrease the operation cost compared to the dual-stack operation style. Considering re-
cent trend of IP technology, we think IPv6 is a better choice for the backend network.
We also designed a robust and scalable IPv4-IPv6 protocol translator software and im-
plemented it. The measurement result showed the software has a slight degradation
compared to the native forwarding cases. The performance was acceptable at least in
the 1Gbps network environment, however we also found that the current user space im-
plementation couldn’t satisfy 10Gbps network performance requirement. We deployed
the idea in our real operation network. We are actually operating the IaaS system and
several real web servers as our daily service infrastructure at this moment. With all
these results and observation, we conclude that the proposed IaaS system is useful and
feasible as one of the future IaaS operation models.

References

1. Mackay, M., Edwards, C., Dunmore, M.: A Scenario-Based Review of IPv6 Transition Tools.
IEEE Internet Computing 7(3), 27–35 (2003)

2. Chen, G.: NAT64 Operational Considerations. IETF (October 2011); draft-chen-v6ops-
nat64-cpe-03

3. Waddington, D.G., Chang, F.: Realizing the transition to ipv6. IEEE Communications Mag-
azine 40(6), 138–147 (2002)

4. Kitamura, H.: Entering the IPv6 Communication World by the SOCKS-Based IPv6/IPv4
Translator. In: INET 1999 (June 1999)

5. Kitamura, H.: SOCKS-based IPv6/IPv4 Gateway Mechanism. IETF, RFC3089 (April 2001)
6. Itojun Hagino, J., Yamamoto, K.: An IPv6-to-IPv4 Transport Relay Translator. IETF,

RFC3142 (June 2001)
7. Bagnulo, M., Sullivan, A., Matthews, P., van Beijnum, I.: DNS64: DNS Extensions for Net-

work Address Translation from IPv6 Clients to IPv4 Servers. IETF, RFC6147 (April 2011)

5 http://www.internetconference.org/
6 http://www.kame.net/

http://www.internetconference.org/
http://www.kame.net/

Designing an IPv6-Oriented Datacenter with IPv4-IPv6 Translation Technology 53

8. Tsirtsis, G., Srisuresh, P.: Network Address Translation - Protocol Translation (NAT-PT).
IETF, RFC2766 (February 2000)

9. Bagnulo, M., Matthews, P., van Beijnum, I.: Stateful NAT64: Network Address and Protocol
Translation from IPv6 Clients to IPv4 Servers. IETF, RFC6146 (April 2011)

10. Mackay, M., Edwards, C.: A Comparative Performance Study of IPv6 Transitioning Mech-
anisms NAT-PT vs. TRT vs. DSTM. In: Boavida, F., Plagemann, T., Stiller, B., Westphal,
C., Monteiro, E. (eds.) NETWORKING 2006. LNCS, vol. 3976, pp. 1125–1131. Springer,
Heidelberg (2006)

11. Škoberne, N., Ciglarič, M.: Practical Evaluation of Stateful NAT64/DNS64 Transition. Ad-
vances in Electrical and Computer Engineering 11(3), 49–54 (2011)

12. WIDE project: WIDE Cloud Controller (August 2011), http://wcc.wide.ad.jp/
13. Shima, K., Ishida, W.: Map646: Mapping between IPv6 and IPv4 and vice versa (August

2011), https://github.com/keiichishima/map646/
14. Kriukas, J.: Linux NAT64 implementation (February 2012),

http://sourceforge.net/projects/linuxnat64/

http://wcc.wide.ad.jp/
https://github.com/keiichishima/map646/
http://sourceforge.net/projects/linuxnat64/

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 54–70, 2013.
© Springer International Publishing Switzerland 2013

Realization of a Functional Domain within a Cloud

Jonathan Eccles1 and George Loizou1,2

1 Department of Computer Science and Information Systems, Birkbeck, University of London,
London WC1E 7HX, U.K.

2 Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus
Jonathan.eccles@hp.com, george@dcs.bbk.ac.uk

Abstract. This paper describes a specific aspect of the work that has been done
to virtualize the IT server estate of a company with a modern business architec-
ture of about three to four hundred servers. This yields a practical server envi-
ronment with the same architecture and servers and integrated networking in an
abstracted form by using sets of HP c7000 chassis units. It has been achieved by
applying hypervisor-based virtualization technologies to clusters implemented
across constituent blades between sets of chassis units. The working system is
enhanced by enabling specific HP c7000 operational capabilities together with
separate virtualization technologies, which are consolidated in a single coherent
design model enabled as a virtualized system implemented within one to three
chassis units on a single site. Furthermore, the system is enhanced by enabling
virtual L3 Ethernet via specific HP c7000 chassis operational capabilities which
are consolidated in a single coherent design mode. The system is now enhanced
so as to operate on a multiple site basis and also to use physical as well as vir-
tual systems (e.g. servers, appliances, applications, networks, storage) in the
same functional domain.

Keywords: Cloud Architecture, Profiles, Policy Management, Virtualization,
Abstraction Classes, Service Control.

1 Introduction

There are many projects now underway which involve producing virtualized envi-
ronments to support large-scale systems. Some of these are created as the result of
physical-to-virtual (P-to-V) transformation programs where, in the first instance, vir-
tual servers may replace the equivalent physical servers. In many cases, this may not
involve any improvement in design other than the consolidation of server processes
inherent in the virtual model. However, the virtualization paradigm may yield many
improvements in systems architecture and design at many levels [6], some of which
are discussed in an upcoming paper [8].

It is often the case that the system designer requires a method in order to be able to
model and simulate part of the target system using the infrastructure intended to sup-
port it. In this case the target system constitutes a virtualized environment and the
infrastructure that complements it is also made up of virtualized components. These
virtualized components are derived from the orchestration policy which is in turn part

 Realization of a Functional Domain within a Cloud 55

of the modelling system as shown in Fig. 2. The target area for the Functional Domain
(FD) is given as the specific layer in the model that is derived via the orchestration
system whose function is to take not just the Virtual Machine (VM) object references,
but also the Virtual Appliance (VA) object references and construct the equivalent
virtual objects in the designated FD, subject to the policy of that specific FD. Addi-
tionally, the target system is fabricated as part of the overall virtualized environment
and essentially can be said to be an FD [7]. This FD is separated from the main parent
virtualized environment by a construct which we have called a Functional Domain
Nexus Interface (FDNI). (See Fig. 1, where NAS, RDP, SAN and VDI stand for Net-
work Accessed Storage, Remote Desktop Protocol, Storage Area Network and Virtual
Desktop Interface, respectively). The FDNI provides a secure point of entry to the
designated FD such that neither TCP/IP-based traffic nor files may traverse the con-
struct in either direction except by using a specific transit process. Thus the FD is a
secure area within the Virtualized Environment, or within the cloud as a whole. This
paper describes how the FDNI and the FD are hosted within a totally virtualized envi-
ronment created by using one or more HP chassis units and a set of blades with X86
hypervisors (VMware ESXi v4.1 [26]). This concept has been referred to as ‘super-
hosting’, since in essence it consists of the hosting of a virtualized distributed system
by a totally virtualized environment. Distributed systems may be implemented within
this environment and tested according to requirements. Alternatively, this method of
virtualized systems engineering can be regarded as a method by which specific areas,
within a dynamic cloud structure, can be defined to exist within certain policy con-
straints pertinent to the specific FD.

This paper introduces the FDNI and will illustrate the practical development of the
associated FD based on the use of a chassis, blades, and the chassis-based On-Board
Administrator / VC system together with sets of hypervisors to host sets of VMs in
conjunction with Virtual Ethernets. The detailed construction of the FDNI in conjunc-
tion with its role in integrated FDs is a key part of another upcoming paper [9].

One of the key additional areas of practical development that is shown hereafter is
how to enable the practical extension of the FD across more than one site within a
Wide-Area Network (WAN). The corollary of this is that the Functional Design ob-
ject gains the properties of being able to integrate with physical servers or appliances
as well virtual ones. This leads to highly flexible designs for FDs within the business
environment context of a cloud.

This paper also discusses how the classes and inter-connectivity of the constituent
VMs is based on modelling structures [2] and paradigms for the virtualized cloud that
are the focus of an upcoming paper [8]. The latter modelling structures are initially
based on those used for distributed systems and are modified in order to produce net-
works of VMs, VAs and Virtual Storage in the context of an FD. Therefore, this paper
presents a new way of formulating a solution to the problem of producing a practical
model for a (virtualized) subsystem of a distributed application. This can be used in
the assessment of the performance and the behaviour of the latter by direct access and
measurement of the relative performance and capabilities of the sub-components with
reference to the system as a whole [17].

56 J. Eccles and G. Loizou

Fig. 1. The basic overview of the FD concept within a Cloud

2 Preliminaries

2.1 Current Paradigms

The initial purpose of this work was to meet the challenge of delivering the same func-
tional solution at the application level to the business problems faced by a customer, but
at a much lower level of delivery cost (say 30%), and also at a much lower level of cost
with respect to future expansion and implementation. This requires that the solution be
at least an order of magnitude more flexible and able to add more value. In order to
achieve this, it is required that the new system be modelled [21] at every level, and also
ideally virtualized at every level in a fully networked abstracted environment.

This solution becomes important not only because of the implicit reduction
in costs but also because the mapping of the business perspective to the tech-
nological areas used in the abstracted environment allows for transparent inte-
gration of systems to improve performance, and also to extend the lifetime of
most classes of legacy systems. Therefore, the solution extends the natural
lifetime of a legacy system, as it becomes virtualized and therefore no longer
dependent on the functioning of its hosting hardware. Additionally, it
enables the evolution of proven software programs to become more powerful
by becoming part of larger-scale integrated systems, which in turn may be-
come a part of a virtualized enterprise. Over time, this virtualized environ-
ment provides a vehicle to enable service-based implementations, eventually

 Realization of a Functional Domain within a Cloud 57

Fig. 2. Derivation of the practical Virtualized Environment from the Process Model of the VMs
created from the P-to-V Process Model

enabling the deployment of SOA (Service Oriented Architecture) in a virtualized
environment.

A more immediate purpose of this work was to enable the delivery of a virtualized
FD that mimics the Production Domain but also has the capability of independent
policy-based control. This must simulate the business problems faced by the customer
and must enable system testing within an effective Proof-of-Concept (PoC) virtua-
lized environment. Within this requirement the capital cost of the interface to the
virtualized FD (PoC) must equate to zero. In order to achieve this, it is required that
the new system be modelled and virtualized at every level in a fully abstracted net-
worked environment. The natural extension to this scenario is how to enable the vir-
tualized FD to operate in a transparent manner across a WAN. This requires the pro-
duction of an effective FD that may serve as a PoC operating amongst operational
domains or network sites. Such a system must be able to include physical as well as
virtual servers in the PoC operational server set.

58 J. Eccles and G. Loizou

2.2 Current Approaches

The only current alternative approaches to creating an FD for use as, for example, a
PoC are those that are recognized as ‘standard’ within the IT industry, largely on the
grounds of security and risk. These will have the equivalent properties of an indepen-
dent virtualized domain that functions on the business network, but which forms a
fully isolated environment that is secure. They involve the use of routers, firewalls
and the construction of an independent network at high capital cost and uncertain
capability with respect to meeting the specific requirement of keeping the same IP
addressing in the isolated FD environment as is kept in the parent cloud environment,
and yet be secure with respect to IP address separation. In addition, the equivalent
standard physical network would not be as flexible nor be as cost-effective, especially
with respect to being extended in order to form integrated FD sets [1].

2.3 Current Status

The FD system is now in full implementation for PoC and also for VM / virtual sys-
tem evaluation performance testing. This PoC facility forms a critical part of the new
P-to-V system transferal methodology in the stages of final testing in the authors’
development facility area for the generation of Virtualized Environments at minimal
cost.

2.4 New Approaches

One of the key attributes of the concept of an FD, referred to in [7], involves the M:M
relationship to a business system. This gives the required degree of flexibility neces-
sary to enable multiple business systems functions (e.g. services) to relate to multiple
degrees of control structure on a peer-to-peer basis in conjunction with hierarchies
within a cloud. This leads naturally to the following formalism for the logical repre-
sentation of the properties of a generic FD; namely,

∀ Network_Node(xi) ∃ { Functional_Domain(y) | Network_Node(xi)

∈ {Functional_Domain(y)}

∧ ((1 ≤ y ≤ Max(Functional_Domain(y)))

∧ (1 ≤ xi ≤ Max(Network_Node(xi))))

∧ ((Network_Node(xi) ∈ {Business_System.Node(ai)})

∧ (1 ≤ ai ≤ Max(Business_System.Node(ai))))

∧ ((Business_System.Node(ai) ∈ {Functional_Domain(y).BusSys(z)})

∧ (1 ≤ z ≤ Max(Functional_Domain(y).BusSys(z)))) }

which is in [7].
The concept of FD, as it is herein presented, enables the requirement that a node

may belong either to different domains within an operational session, depending on
the set of abstracted processes being invoked; or alternatively, it may be a member of
more than one domain simultaneously. By abstracting the concept of the network

 Realization of a Functional Domain within a Cloud 59

Fig. 3. A generic tier-based structure to illustrate the major classes and subclasses of an appli-
cation that may exist within a conventional distributed systems environment

node within a cloud, each Network_Node object can be associated with different sub-
classes of abstracted cloud classes, e.g. those of users, user groups or workstations.

2.5 Server Process Abstraction

There is a great degree of overlap in the structure and the basic design of a cloud
when compared to a large-scale open enterprise system. There is an ever-increasing
tendency to formulate applications as distributed systems for a variety of reasons.
Amongst these is the requirement for source code to become more agile in the sense
that it can become more re-usable. When dealing with conventional physical systems
this essentially means that modules that are constructed and compiled using such code
(e.g. ActiveX, .NET [4], CORBA [19,22], JMS [10] modules) are copied between
different physical servers. In such cases their degree of separation within a single
project tends to be governed by their relative degrees of utilization within that self-
same environment. Thus this pattern tends to follow the relatively restricted pattern of
the distribution of server class shown in Fig. 3.

Hence it becomes essential to add value to the process of virtualization, and from
there to the formation of a cloud through the use of processes that are currently being
developed to consolidate the distribution of VMs in conjunction with their relative

60 J. Eccles and G. Loizou

Fig. 4. A generic tier-based structure to illustrate the general classes of operating system and
systems hosting that may be compliant with each level of application in a conventional distri-
buted system

degrees of utilization [24]. This enhancement of virtualization is presently being
modelled [8], so as to achieve a greater level of consolidation of application modules
on the basis of their function with respect to their access functions. If the access func-
tions are distributed and yet owned by separate projects, then the ownership paradigm
must not be a determinant for which application modules become associated by
threads to the required software modules. This indicates that many projects can there-
fore have temporary ‘ownership’ through the use of associated threads of one or more
virtualized processes.

If this policy is implemented, then the result tends toward a distributed software
environment that is more in line with that shown in Fig. 4. This illustrates the basis of
a distributed environment that is, whilst ideally virtualized, also shared such that mul-
tiple projects within a business may have access to the same resource sets (VMs, VAs
et al.) that exist within each level [16,13]. This concept leads to the formulation of a
generic tier-based structure to illustrate the general classes of operating system and
systems hosting that may be compliant with each level of application in a convention-
al distributed system. The essential concept to convey is that each instance of such a
structure can be configured to occupy a single FD, where it may be examined in de-
tail. The natural extension to this paradigm is that multiple areas of such shared re-
sources may be deployed within one or more FDs in the same superhost.

Each such tier contains many VMs, VDIs and VAs that may be accessed by
multiple access modules from multiple projects. The security level issues are not
addressed in this paper but are the result of different policies from different FDs

 Realization of a Functional Domain within a Cloud 61

resulting in different software module access profilers being generated in accordance
with different system requirements.

2.6 Hardware Environment

The Virtualization Environment was developed using blade technology on an HP
c7000 chassis which has 16 internal device bays. A chassis is able to host up to 16
half-height blades or up to 8 full-height blades or any combination of the two depend-
ing on the class of blade. The chassis operational system was configured using an HP
c7000 Operational Administrator (OA) module and an HP c7000 Virtual Connect
(VC) bay module. All external interface modules (power, network, Host Bus Adapter
(HBA) for Fibre-Channel (FC) storage access) were implemented in duplicate for
seamless failover. The virtualized environment selected involved the use of X86 pro-
cessor architecture to implement the VMware ESXi v4.1 hypervisor.

This was done through the use of the HP BL490c blade (2 * 4 core @2.56GHz,
96GB RAM, 2 * 1 Gbps NIC). The external HBA interface consists of 4 * 4Gbps FC
interfaces to the SAN controller for direct access to the SAN-based hard drives
through an HP XP24000 storage chassis. The network consisted of dual 3 * 10Gbps
Ethernet from the VC bay (port 3X, 4X, 5X) implemented as a shared system con-
nected to the dual Cisco 6509 L3 switches. This is complemented by a dual link to the
NAS storage drive via a NetApp VFiler which is accessed through port 6X of the VC
bay using IP at 10Gbps. This hardware setup is duplicated on both sites and is illu-
strated in Fig.10. The HP XP24000 SAN is simulated through the use of a VM in the
FD that accesses the NAS whilst running a software emulator for the HP XP24000
SAN.

2.7 Proof-of-Concept / Subsystem Abstraction

The concept of the virtualization of distributed subsystems has been utilized in order
to test complex distributed applications, some of which have been produced by P-to-V
operations and some through more conventional UML modelling (Muller, 1997).
These VMs are required to be integrated in a duplicate environment to that of main
production using equivalent software design but in a situation that was secure and
where the relative performance criteria could be assessed. This system is now in full
implementation for PoC testing and also for VM Factory testing.

3 Design of a Generic Approach

The initial approach was to undertake an analysis of the extant physical environment,
producing the required landscape and cost of the basic business solution. This was
followed by a projection based on the model of future operations with available com-
pute technology for high level processing, yielding the initial levels of %CPU utiliza-
tion based on physical server hosting. This solution concept was re-worked using
the ‘superhosting’ concepts described within this paper. A ‘superhost’ is a computing
system capable of running a very large number, in our case more than 200,

62 J. Eccles and G. Loizou

COTS-based subserver operating systems. These systems are normally extended ap-
plications that are implemented as distributed systems and have the property of being
able to be interconnected at the level of a routable protocol (e.g. DCOM, COM+,
ODBC, .NET [5]).

The latter sets of systems also have the requirement to be interconnected at a
routing (L3) level and are thus able to be implemented within flexible environments
produced by different FDs. This re-working was followed by process analysis of the
extant physical system as a whole. This is in order to evaluate the optimum processing
capability of the proposed classes of Target Host server with reference to the meas-
ured utilization of the threads of the extant physical server processes. From this, the
VM-to-target Host Server mappings are computed in order to evaluate the theoretical
P-to-V consolidation ratios of the VMs to the Target Hosts. This can create a number
of alternative mapping scenarios, depending upon the sets of VMs and target classes
selected.

The initial approach involved an automated analysis of the current customer physi-
cal environment, producing the required system and P-to-V model and cost of the
basic VM-to-target mapping solution. This was followed by a projection based on the
model of future operations and costs with available compute technology for high level
processing, yielding the initial levels of %CPU utilization based on the best projected
set of VM-to-target mappings. For each functional sub-domain within the derived
host model, this solution concept as a whole was re-worked using ‘superhosting’ by
employing blades within chassis architectures.

The next step in the Transition Mode of Operation (TMO) was to create an FD in
the HP c7000 chassis, separated by an FDNI, so as to be able to create VMs from the
current Production area and test the basic functionality of each generated VM. This
was done by creating sets of Virtual Ethernets using the VC functions on the HP
c7000 chassis. The critical point of the architecture is where the separation of the
independent FD for the superhost is achieved using the FDNI. The separation of the
Production network into two or more networks with the same IP subnet domain is
achieved by the FDNI, effectively acting as a network diode, so as to achieve a unidi-
rectional dataflow between them, where the event of passing an object through the
diode is only able to be achieved through a deliberate action using a transfer facility
within the FDNI. This degree of separation is achieved as a consequence of the FDNI
implementing the following criteria: No IP Forwarding between the two physical
NIC’s of the blade server; Virtual Ethernet Separation via nested VMs hosting nested
firewalls and via Protocol Separation through a VM hosting a dual-point of access
created to a SAN datavolume, which is addressed using both the NFS and the CIFS
protocols. This results in no capital cost overhead.

The range of this solution was extended by evaluating the internetworking of each
physical server with respect to the hosted application’s dataflow(s), and adding this
information to the model of the current TMO environment. The next step in the TMO
was to create a restricted area in the HP c7000 chassis in order to be able to create
VMs from the current Production area. This was complemented by the creation of a
TMO ‘proving area’ to test the basic functionality of each generated VM. The FD in
the proving area enables the validation and tuning of the VM in conjunction with final
confirmation on the functionality of the VM.

 Realization of a Functional Domain within a Cloud 63

This was followed by the creation of the Virtualized Ethernets and their inter-
connection using both L2 networking through sets of inter-connecting VMs. The vir-
tual networks which are defined within the model are implemented using HP Virtual
Network technology which utilizes OSI Level 2. We have extended this through the
use of both VAs and VMs. In our case a set of Linux-based VAs were created to ena-
ble OSI Layer 3 routing between different subnets as well as firewalls to separate
different virtual Ethernet environments, such as DMZ architectures, within the Virtua-
lized ‘SuperHost’ (cf. Fig. 8, 9). This is the most basic overview utilizing approved
modelling techniques. A full model is multi-layered and too complex to be included
in this short paper. We utilized the IEEE standard RFC1918 which allowed the build-
ing of controlled networks such that L3 routing was required to enable their inter-
connection.

The initial area of innovation presented here is the derivation of a full virtualized
system from a complex physical model. This level of complexity must be retained as
systems management will be integrated with the full multi-layered model. The main
area presented extends the L2 Virtualized Ethernet to L3 using specific sets of L3
routers implemented as VAs, which enables the integration of sets of disparate COTS-
based technologies, so that they may inter-operate transparently in the same HP c7000
device. This involves using sets of specific VAs to enhance the functional capabilities
of the Virtualization Management software controlling the HP Smart Chassis and
Blade Solution. The next area of innovation is to use the described extensions to ena-
ble a VDI layer virtual Ethernet to give a layer of secure access from the Cisco-based
production network in a transparent manner through an uplink (Fig. 10).

3.1 Functional Domain Nexus Interface Mk II

Nexus Mk II Zones for the PILOT Environment Design: the design essentially
becomes similar to a ‘Jump Box’ using IEEE RFC1918 networks and Microsoft Ter-
minal Services technology. A Microsoft Firewall is active on the Nexus VM. IP for-
warding is NOT permitted on this VM. Shared FC SAN is still used in the datacentre
implementation allowing the implementation of a ‘Reverse Nexus’. The virtualized
equivalents of the physical environment are consolidated into Virtualized Ethernets
(Vnets) for Vmotion and for Virtual Business networks that are within a defined vir-
tual site which hosts the virtualized datacentre. The VLAN principles for the FD pilot
area are that the VLAN configurations from the Cisco 6509 L3 switch to the HP
c7000 chassis are standard for each production chassis. The term Vnet is used to de-
scribe an HP VC internal chassis network. Internally, the HP VC module software and
VMWare ESXi hypervisor will be configured to provide intra-chassis variance. The
pilot intra-chassis variance (Fig. 5) will be as per FDNI Mk II design, where a Vnet
connected to production is present; a Vnet ‘Transit’ NOT connected to production is
present and Vnets ‘Pilot-V-Production1’ and ‘Pilot-V-Production2’ NOT connected
to ‘Production’ are present. ‘Transit’ Vnet is a 172 IP; ‘V-Datacentre1’ and ‘V-
Datacentre2’ are similar in structure to those in the Production area, but are segre-
gated by ‘Transit’ and the FDNI VM from main production.

64 J. Eccles and G. Loizou

Fig. 5. A summary illustration of the FDNI that shows the basic parameters that are involved in
the interfacing between the Production, the Transit and the FD (Pilot) environments

3.2 Functional Domain: Creation of the Basic ‘Superhost’

This section illustrates the more detailed construction of the FD by increasing the
complexity, and thereby the corresponding degree of functionality, of the superhost.
Initially, as shown in Fig. 6, the production network of the cloud is linked through a
VC port (3x, 4x, 5x) of the HP c7000 chassis to the FDNI entry port via the produc-
tion NIC (NIC-1) of the HP BL490c blade upon which the FDNI / FDNI VM has
been installed.

The FDNI is connected to the exit port via NIC-2 of the blade, which is in turn
connected to the ‘Transit’ virtual Ethernet. As the name implies, all constituent HP
BL490c blades in their respective clusters (Fig. 7) within the FD have one of their two
NIC’s connected to the ‘Transit’ virtual Ethernet. This gives a method of L2 TCP/IP
connection for all VMs/VAs that are installed in the FD. However, not all installed
VMs require direct connectivity to the ‘Transit’ virtual Ethernet. It is only important
that there is a route that can be taken by L2 to ‘Transit’ at this point. The next level of
development is to use the latter L2 connectivity to facilitate the addition of further
virtual Ethernets (e.g. Virtual_Datacentre2, Pilot_V_Production1 in Fig. 7) using HP
c7000 VC software.

This is now complemented by the addition of an extra virtual Ethernet for the host-
ing of a set of VDIs. The VDIs are communicated with via the FDNI using the RDP
(Microsoft). When activated the user has access to a remote desktop window which
operates inside the FD/PoC, and with this the user may operate safely without

 Realization of a Functional Domain within a Cloud 65

Fig. 6. View of the initial 'Superhost' structure showing the interface between the Production,
the Transit and the FD (in this case the Virtual Datacentre) environments

Fig. 7. The addition of more Virtual Ethernets to the FD. These can only be accessed from the
‘Transit’ Virtual Ethernet employing TCP/IP L2 using the 4 vNIC ports in any of the local VMs

66 J. Eccles and G. Loizou

Fig. 8. The addition of an extra VDI virtual Ethernet as well as additional production emulation
layers within the FD. These inter-communicate using TCP/IP L2. The addition of TCP/IP L3
switching capability to this set of virtual Ethernets is done by creating a VA-based on Red Hat
Linux using the FreeSCO L3 switch software.

any risk that his/her activities may compromise the functionality or the integrity of the
external cloud. The FD design is now taken to a further level by the addition of a L3
switch, which is implemented by using a VM with a Red Hat Linux guest operating
system together with a FreeSCO L3 switch command system. This now results in the
design model of Fig. 8. This has resulted in the use of VAs to enable a DMZ to be
constructed (Fig. 9). The totality of these incremental layers of development is now
available using L3, and also using uplinks to the 3x, 4x or 5x HP c7000 VC ports to
the Cisco Ethernet networks.

This leads to the extension of the design concept in that the overall FD can access
an isolated Ethernet that runs between the two sites. As such it is important to under-
stand that the Ethernet concerned must be isolated from the main network, so that
there may be no interference with respect to the traffic or the TCP/IP addressing
ranges. Thus, this requirement is met by the set of two FDs illustrated in Fig.10.

Therefore the next area of innovation is to enable a VDI layer virtual Ethernet to
give a layer of secure access from the Cisco-based production network in a transpa-
rent manner through an uplink from the chassis (Fig.10) to the Cisco L3 switch layer.
This results in the FD being extended so that it is still bounded by the FDNI_entry
and the FDNI_exit but now extends between the two sites in a seamless fashion. This
has been done using a stretched VLAN between sites in order to maintain the same
subnet and gateway address, but this technique only works where the physical con-
nectivity distance between the sites is less than of an order of 20km. If stretched
VLANs were replaced by L3 switching, then the FD network could still be isolated
but the IP addresses of the constituent FD elements will be different on each of the

 Realization of a Functional Domain within a Cloud 67

Fig. 9. The addition of a De-Militarised Zone (DMZ) made up of Linux-based VA Firewall
units on a separate DMZ virtual Ethernet, and a L3 switch to link all of the FD virtual Ethernets

Fig. 10. Extended cross-site virtualized FD (PoC)

respective sites. This does not mean that this design no longer works, but rather that
the mapping models in Fig. 2, 3 and 4 must be accurately detailed so that the IP ad-
dressing of each VM on each site is categorized and implemented through the use of
DHCP/DNS. This design enables users to use the VMs/VAs either directly through

68 J. Eccles and G. Loizou

the specific use of RDP from the Production network through the FDNI, or via con-
trolled access of the VDIs via the uplink interface from the isolated test virtual Ether-
net to the HP c7000 VC. This is extended to operate on a WAN-based cross-site basis
as shown in Fig. 10. This can now include physical devices as well as VMs/VAs
(DHCP stands for Dynamic Host Configuration Protocol.).

This design enables the testing of a set of specialized applications with an HP
Superdome and a SUN F15K using the FD/PoC environment adapted so as to isolate
the physical server components of the required applications. The physical and virtual
servers are implemented using the current IP addresses of their equivalent Production
hosts due to the capabilities of the FDNI.

4 Discussion

It is envisaged that each such subsystem may be represented within an FD with the
contents of each such subsystem making up an individual distributed application. This
technology introduces a practical means of implementing ‘Systems Engineering depth
to breadth switching’ which is broadly defined as “The ability of systems engineers
and architects to cognitively alternate, from a detailed engineering discipline rigor, to
a meaningful broad level of abstraction. These unique individuals have the ability
tobuild models that hide underlying implementation details and bridge the communi-
cation gaps between multiple disciplines.” [25]. Each such subsystem modelled with-
in an FD should be able to be represented as a single class composed of a set of con-
stituent classes. The relationship to be pursued here is not one of inheritance as in a
superclass to a set of subclasses [20,23] but rather one employing the techniques of
frame-based modelling [18,14] to produce a framework class to represent the know-
ledge of how the system is constructed.

5 Future Work

This area of integration is carried out within a single HP c7000 chassis and extended
across multiple chassis units to form a distributed centre capable of supporting in the
order of more than 1000 VMs. Further work is required in building a fully integrated
model with distributed sets of chassis units that are linked using L3 TCP/IP with
DHCP/DNS/X.500-based directory services to facilitate the dynamic movement of
VMs that are within the same FD, but are actually located on different sites. This
work also needs to be extended in applying different classes of QMS Requirement-
based Clustering [3] to the multi-cluster blade model within the ‘SuperHost’, thus
enabling different ‘SuperHost’ entities to be clustered in different manners [15] ac-
cording to the QMS Requirements specified. This leads towards using the
‘SuperHost’ system as a key component in a practical solution to cloud computing.
The principle here is that an FD could be used to enable a set of pattern-based design
tools to create a practical means of designing and modelling systems [12,23], from the
simple to the very complex indeed. Such systems, through the use of associated meta-
data, could also have the capability of interfacing to complex simulation systems
based on describing systems in terms of specific class-based connectivity, such as

 Realization of a Functional Domain within a Cloud 69

Hyperformix. Creating multiple sets of overlapping FDs for accelerated policy simu-
lation and system modelling is another area that is being currently pursued. This can
be done through the use of mathematics followed by the creation of VMs as simulated
application servers. This will create overlapping models where the resultant effect on
the net policies can be virtualized.

6 Conclusions

This paper presents the basis for advancing the concept of the metamodel by moving
from a set of modelling methods within a framework methodology [11] to an equiva-
lent model that is virtual and can participate in positive testing and evaluation before
the main product is finally constructed, thereby lowering the overall cost and risk
involved in a development project.

References

1. Caetano, A., Pombinho, J., Tribolet, J.: Representing Organizational Competencies. In:
ACM Symposium on Applied Computing (SAC 2007), pp. 1257–1262 (2007)

2. Carman, C.: Applying UML and Patterns, 2nd edn. Prentice Hall (2001)
3. Codina, J.M., Sanchez, J., Gonzalez, A.: Virtual Cluster Scheduling Through the Schedul-

ing Graph. In: IEEE International Symposium on Code Generation and Optimization
(CGO 2007), pp. 89–101 (2007)

4. Conrad, J., Dengler, P.: Introducing .NET. WROX Pub. (2000)
5. Corn, C., Mayfield, V.: COM/DCOM Primer Plus. SAMS (1998)
6. Daniels, J.: Server Virtualization Architecture and Implementation. ACM Cros-

sroads 16(1), 8–12 (2009)
7. Eccles, J., Loizou, G.: Functional Domain Concepts in the Modelling of Cloud Structures

and the Behaviour of Integrated Policy-Based Systems Through the use of Abstraction
Classes. In: 1st International Conference on Cloud Computing and Services Science
(CLOSER 2011), Noordwijerhout, The Netherlands, May 7-9, pp. 86–97 (2011)

8. Eccles, J., Loizou, G.: A Methodology to Control the Production of a Practical Virtual En-
vironment for a Cloud in an Optimal Manner from a Complex Physical Environment (in
preparation_a)

9. Eccles, J., Loizou, G.: An Extended Methodology to Integrate Multiple Functional Do-
mains within a Virtualized Environment by Enhancing the Functional Model-ling of the
Nexus Interface units (in preparation_b)

10. Farley, J.: Java Distributed Computing. O’Reilly (1998)
11. Fayed, M.E., Johnson, R.E.: Domain-Specific Application Frameworks. Wiley (2000)
12. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley (2004)
13. Traore, I., Aredo, D.B., Ye, H.: An Integrated Framework for Formal Development of

Open Distributed Systems. In: ACM Symposium on Applied Computing (SAC 2003), pp.
1078–1085 (2003)

14. Karp, P.D.: The Design Space of Frame Knowledge Representation Systems, SRI Interna-
tional Technical Note No 520, Artificial Intelligence Centre, Computing and Engineering
Sciences Division (1992)

70 J. Eccles and G. Loizou

15. Kim, G.-J., Han, J.-S.: The clustering algorithm of design pattern using object-oriented re-
lationship. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part III. LNCS, vol. 4707,
pp. 997–1006. Springer, Heidelberg (2007)

16. Loy, I., Galan, F., Sampaio, A., Gill, V., Rodero-Merino, L.: Service Specification in
Cloud Environments Based on Extensions to Open Standards. In: ACM Communication
System Software and Middleware (COMSWARE 2009), Dublin, Ireland (2009)

17. Menasce, D.A., Almeisida, V.A.: Performance by Design. Prentice Hall (2004)
18. Minsky, M.: A Framework for Representing Knowledge. MIT-AI Laboratory Memo 306

(1974)
19. Mowbry, T.J., Malveau, R.C.: Corba Design Patterns. Wiley Computer Publishing (1997)
20. Muller, P.-A.: Instant UML. Wrox Press (1997)
21. Niculescu, V., Moldovan, G.: Building an Object Oriented Computational Algebra System

Based on Design Patterns. In: Proceedings of the Seventh International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2005), p. 8. IEEE
Computer Society, Washington, DC (2005)

22. Otte, R., Patrick, P., Roj, M.: Understanding Corba (Common Object Request Broker Ar-
chitecture). Prentice Hall (1996)

23. Shannon, B., Hapner, M.: Java 2 Platform Enterprise Edition – Platform and Component
Specification. Addison Wesley (2000)

24. Solomon, B., Ionescu, D.: Real-Time Adaptive Control of Autonomic Computing Envi-
ronments. IBM Centre for Advanced Studies, Toronto, pp. 1-13 (2007)

25. Trowbridge, D., Mancini, D., Quick, D.: Thoughtworks Inc.: Enterprise Solution Patterns
using Microsoft .NET, Version 2.0. Microsoft Press (2003)

26. VMware Corporation: VMware Server Administration Guide 1.0 VMware Inc. (2006),
http://www.vmware.com/support/pubs

Mining Facebook Activity to Discover Social Ties:
Towards a Social-Sensitive Ecosystem�

Sandra Servia-Rodrı́guez, Rebeca P. Dı́az-Redondo,
Ana Fernández-Vilas, and José J. Pazos-Arias

Department of Telematics Engineering, Escuela de Ingenierı́a de Telecomunicación,
University of Vigo, Spain

{sandra,rebeca,avilas,jose}@det.uvigo.es

Abstract. Clearly there is a growing omnipresence of social networking sites
in particular and social services in general. Given this translation of social rela-
tions into the cloud, services are facing the problem of deciding, for every user,
what are the really relevant links to provide a social-sensitive response. To this
end, this paper provides a model for calculating the strength of social ties based
on interaction information collected from various social APIs in the cloud. We
apply this general model over users’ data gathered from the Facebook API and
preprocess this data to extract representative stereotypes. Apart from evaluating
the tie strength according to the observed behaviour of the stereotyped users, we
describe the utility of our model to deploy a social-sensitive ecosystem. We en-
vision a ecosystem where services functionality is enhanced by the knowledge
about users’ social ties; services in the scope of social marketing, attention man-
agement and contacts management are included to clarify our vision.

1 Introduction

Social networks have become increasingly popular, turning into an important mean
of communication among people of all ages. Although they do not expect to supply
traditional communication, they are an important complement to it, allowing users to
keep their contact list, share information and interact with others through cross-posting,
messaging, games, social events and applications. Recently, several researches on on-
line social networks have came up as consequence of their importance among Internet
users. A plentiful number of them have focused on improving users’ social experi-
ence by means of socially-enhanced applications using, for this purpose, information
from their profiles and links in these networks, as in Wilson et al. [1] and in Chen and
Fong [2]. The former suggests improving a white-listing system for email using so-
cial ties strength that allows emails between friends to bypass standard spam filters or
detecting Sybil identities1 in an online community to protect distributed applications.

� Work funded by the Ministerio de Educación y Ciencia (Gobierno de España) research project
TIN2010-20797 (partly financed with FEDER funds), and by the Consellerı́a de Educación e
Ordenación Universitaria (Xunta de Galicia) incentives file CN 2011/023 (partly financed with
FEDER funds).

1 Sybil attacks happens when a malicious user pretends to have multiple identities -Sybil
identities- to get to control a peer-to-peer system.

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 71–85, 2013.
c© Springer International Publishing Switzerland 2013

72 S. Servia-Rodrı́guez et al.

The latter, in turn, proposes a framework of collaborative filtering on social networks,
for which study the contribution of trust, similarity between profiles, relation between
users and reputation.

These applications, as others recently developed, assume that social ties between
users and their friends have not the same strength, i.e. the more interaction they have,
the more relevant their tie will be. So, improving the effectiveness of these applications
requires distinguishing strong ties from weak ties in social networks. With this aim, we
have developed an approach to infer social ties between users from their interactions
on Facebook. We have selected Facebook to put into practice our approach of gathering
users’ interaction activity because it is the largest social network with over 800 million
active users [3]. Besides considering different tie signs (which denote interaction) on
Facebook, we take into account aspects such as that relationships change over time and
that they are more intense when less people are involved in them.

This paper is organised as follows. The following section provides a selection of
works related to our proposal. Before detailing our method to infer ties strength indexes
from Facebook in Section 4, in next section (Section 3) Facebook signs that imply
interaction between users are indicated. Experimental evaluation that shows how our
application works properly are provided in Section 5. Section 6 describes the context in
which our application is included and shows examples of services to socially-enhance.
Finally, in Section 7, a discussion in this field is provided.

2 Related Work

The concept of tie strength was introduced by Granovetter [4], who defines it as a func-
tion of duration, emotional intensity, intimacy and exchange of services from which
ties are split into ’strong’ and ’weak’ ties. Although this work, as well as many others
about this subject, are included in the field of social science, there are also several stud-
ies related to the same topic in computer science. For example, Mutton [5] describes a
method of inferring a social network by monitoring an IRC channel in which, to obtain
the network, an IRC bot observes the messages exchanged between users in the chan-
nel and, from this information, infers the social network in which they are involved.
Other example is the case of Tyler et al. [6], who propose a method for identifying
communities using e-mail data.

In the case of online social networks, they already provide users’ social graphs,
which are made of links between users and their contacts in these networks. How-
ever, initial studies on interaction networks (networks made up of ties among users who
often interact through social networks) have brought great insights into how an interac-
tion network is structurally different from a social network. Examples of these works are
Wilson et al. [1], Viswanath et al. [7] or Backstrom et al. [8], which study users’ activity
on Facebook to built on the interaction network, taking into account different interaction
signs. In Wilson et al. [1], for each user, these signs are links in the social graph (they
only consider interactions between Facebook friends), wall-posts and photo comments,
whereas Viswanath et al. [7] only take into account wall-posts to study the varying
patterns of interaction over time affect the overall structure of the interaction network.
Finally, Backstrom et al. [8] study how Facebook users allocate attention across friends,

Mining Facebook Activity to Discover Social Ties 73

taking into account, as well as messages, comments and wall-posts, information about
how many times one user views another’s profile page or photos posted by another
user. Both Wilson et al. [1] and Viswanath et al. [7] use Facebook data obtained using
crawlers otherwise, Backstrom et al. [8] retrieve data directly from Facebook, since in-
formation about users’ passive interactions such as browsing updates, photos or profiles
from their friends through homepage, is not available.

Other studies to deduce the interaction network, as in Gilbert and Karahalios [9], are
supported by the information kept in users’ profiles: age, political ideals or distance be-
tween hometowns, for instance. However, Kahanda and Neville [10] study how to infer
the nature and strength of relationships among Facebook’s members using attribute-
based features (gender, relationship-status,...), topological features (connectivity of the
users in the friendship graph), transactional features (Wall postings, picture posting and
groups) and network-transactional features (Wall posting in another users Wall,...) to
obtain users’ ”top-friends”. They have concluded that the most outstanding features to
predict tie strength are network-transactional features, followed by transactional ones.

In this paper, we propose an approach to infer social ties between users from their
interactions on Facebook. Although studies like Gilbert and Karahalios [9] consider
information kept in users’s profiles (age, political ideals,...), from our point of view,
they are not as reliable as other signs left by users in the network, mainly different
modes of interaction which we consider in our application. Apart from other features
of interaction, we consider wall-posts, tagged photos or membership of a group as in
the case of Kahanda and Neville [10]. However, in our proposal, as well as using these
features, we take into account aspects such as that relationships change over time and
that they are more intense when less people are involved in them.

Finally, aforementioned works get Facebook data using crawlers or directly from
Facebook servers. However, as our approach is part of a large project to provide per-
sonalized services in the cloud, we are interested in using information obtained through
social network APIs. In this paper, we propose getting the most out Facebook API and
taking into account all users’ information available having their suitable permissions,
which is relevant from the view of interaction. Anyway, the procedure can be easily
generalized to any social networking site with a public API.

3 Tie Signs: The Facebook Case

Facebook provides users with the typical interpersonal communication features, al-
though its highlight is the wall. Subscribers use the wall to post photos, videos, links
and messages that may be enriched with any friends’ comment. Besides, mini-feeds
provide detailed logs of each subscriber’s actions, so any friend may see at a glance
how has been his evolution in Facebook over time. As in any social network, security is
a key factor and Facebook allows their subscribers to personalize the privacy settings to
restrict access to the profile information, mini-feed, wall posts, photos, comments, etc.
only to friends, friends-of-friends, lists of friends, no one or all.

74 S. Servia-Rodrı́guez et al.

Fig. 1. User’s social sphere

On the premise the more interaction between two users, the more tie strength, we have
developed a Facebook application2 that extracts user’s activity in Facebook and infers
the closeness between a target user, u, and one of this friends, v (Figure 1). Since u
probably takes advantage from the Facebook facilities to communicate with v (private
messages, wall-posts, photos and videos uploads, etc.), we use all this interactions as
signs to build a model that calculates the tie strength between u and v, from the u’s
perspective: TSu(v). Please, note that this subjective point of view surely cause that
the tie strength from the v’s perspective, TSv(u), is different.

After a detailed analysis of Facebook features and how users interact and communi-
cate, we have identified the interaction signs whose mathematical notation is as follows:

Wall-Posts. Let P (x, y) = {p1(x, y), p2(x, y), . . .} be the set of wall-posts user x has
written on y’s wall. Thus, Ps(x) =

⋃
∀y {P (x, y)} is the set of x’s posts over his

friends’ wall and Pr(x) =
⋃

∀y {P (y, x)} is the set of wall-posts that x has received.

Private Messages. The set of private messages that user x has sent to user y is denoted
by PM(x, y) = {pm1(x, y), pm2(x, y), . . .}. Consequently, PMs(x) =

⋃
∀y {PM(x, y)}

is the set of private messages x has sent and PMr(x) =
⋃

∀y {PM(y, x)} is the set of
private messages x has received.

Comments. Let C(x, y) = {c1(x, y), c2(x, y), . . .} be the set of comments done by x
about y’s entries (photos, wall-posts, etc.). Then, Cs(x) =

⋃
∀y {C(x, y)} is the set of

comments done by x about any Facebook user’s entries and Cr(x) =
⋃

∀y {C(y, x)} is
the set of comments that the x’s entries have received.

Likes. Let L(x, y) = {l1(x, y), l2(x, y), . . .} be the set of likes done by x over y’s
entries. Then, Ls(x) =

⋃
∀y {L(x, y)} is the set of likes done by x and Lr(x) =⋃

∀y {L(y, x)} is the set of likes that x’s entries have received.

2 Using the OAth2.0 protocol, our application requires the target user grants a set of privileges
that are explicitly required when joining the application (see Section 5).

Mining Facebook Activity to Discover Social Ties 75

Photos and Videos. The set of x’s photos where user y has been tagged is defined
as PH(x, y) = {ph1(x, y), ph2(x, y), . . .}. Analogously, the set of x’s videos where
user y has been tagged is defined as V D(x, y) = {vd1(x, y), vd2(x, y), . . .}. Then,
PH(x) =

⋃
∀y {PH(x, y)} (V D(x) =

⋃
∀y {V D(x, y)}) is the set of x’s photos

(videos) where any of his friends is tagged.

Belonging to the Same Groups. Gp(x) = {gp1(x), gp2(x), . . .} denotes the set of the
public groups to which x belongs and Gs(x) = {gs1(x), gs2(x), . . .} denotes the set of
the private or secret groups to which x belongs.

Event Attendance. EVp(x) = {evp1(x), evp2(x), . . .} denotes the set of public events
to which x has shown intention to participate and EVp(x) = {evp1(x), evp2(x), . . .}
denotes the set of secret or private events to which x has intention to go.

4 Tie Strength Inference

This paper focuses on inferring tie strength indexes between Facebook friends, so we
analyze how to assess the closeness u perceives about his relationship with v: TSu(v) ∈
[0, 1]. In order to obtain the index value, we propose the following logarithmic function:

f(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if 0 ≤ x ≤ x̄2

xmax

ln(
xmax

x̄2
x)

ln(
xmax

2

x̄2
)

if
x̄2

xmax
< x

(1)

being x and xmax the mean and maximum value, respectively. So, f(x) is close to 1 if
x > x, close to 0 if x < x and, finally, close to 0.5 if x ∼ x; exactly the behavior we
are looking for. With this function as base, Section 4.1 shows our approach to calculate
the tie strength index. However, as life itself, tie strength should be a dynamic index
reflecting that old interactions are progressively less important and, so, should have
less influence in the index calculation. Additionally, some signs’ influence vanishes as
the number of participants increase, so we have also added the concept of relevance.
Section 4.2 shows as time and relevance are taken into account in the index calculation.

4.1 Tie Strength Calculation

We propose obtaining the strength index of the tie between u and v, from the u’s per-
spective, as a weighted addition of three kind of interactions: (1) on-line, TSu|o(v); (2)
face-to-face, TSu|p(v); and (3) interest-based, TSu|i(v):

TSu(v) = β · TSu|o(v) + γ · TSu|f (v) + (1− β − γ) · TSu|i(v) (2)

On-Line Interactions (TSu|o(v)). Under this name we include those signs that happen
exclusively in the Facebook world and do not require a previous face-to-face contact:

76 S. Servia-Rodrı́guez et al.

wall-posts, comments, likes and private messages. We define two subsets: addressed-
signs and open-signs. The former draw together the interactions that v explicitly sends
to u –a private message, for instance; whereas the latter are those interactions without
an explicit receiver –any like, for example. Therefore, TSu|o(v) is obtained as follows:

TSu|o(v) = α · f(xd(v, u)) + (1− α) · f(xo(v, u)) (3)

where

xd(v, u) =|P (v, u)|+ |P (u, v)|+ |PM(v, u)|+ |PM(u, v)|
xo(v, u) =|C(v, u)|+ |C(u, v)|+ |L(v, u)|+ |L(u, v)|

are the number of addressed-signs and the number of open-sings, respectively and f(x)
is the logarithmic function in Equation 1. Since α reflects the importance of addressed-
signs, that we consider is significantly more relevant than open-signs, it should be higher
than 0.5.

Face-to-Face Interactions (TSu|f (v)). This contribution reflects any interactions
showing a previous physical contact between u and v. It is obtained as follows:

TSu|f (v) = f(x(u, v)) (4)

where
x(u, v) = |PH(u, v)|+ |V D(u, v)|

denotes the number of u’s photos and videos where v is tagged and f(x) is the loga-
rithmic function in Equation 1.

Interest-based Interactions (TSu|i(v)). This contribution assesses the common inter-
ests that u and v have explicitly shown. In the Facebook universe this may be done by
subscribing to a group as well as accepting an event invitation. Thus, it is obtained as
follows:

TSu|i(v) = α · f(yd(v, u)) + (1 − α) · f(yo(v, u)) (5)

where

yd(v, u) =|Gs(u) ∩Gs(v)|+ |EVs(u) ∩ EVs(v)|
yo(v, u) =|Gp(u) ∩Gp(v)|+ |EVp(u) ∩ EVp(v)|

are the number of addressed sings (private and secret groups and events), and the num-
ber of open-signs (public groups and events), respectively and f(x) is the logarithmic
function in Equation 1; α, since has the same meaning than in Equation 3, should have
the same value and be always over 0.5.

4.2 Impact of Time and Relevance

Not all Facebook signs, even belonging to the same kind, should have the same rel-
evance in the index calculation. For instance, being tagged together in a five-people

Mining Facebook Activity to Discover Social Ties 77

photo it is clearly more relevant than being tagged together in a twenty-people photo;
at least, it may be assumed that in the first case the situation entails more closeness.
So, some signs’ relevance vanishes as the number of participants increase. For time we
adopt the same pattern: relevance vanishes as time goes by. Thus, we propose modifying
the previous equations by using the following decreasing function:

d(x) = e−µ·x (6)

where μ represent the strength of the slope, i.e. the velocity to vanish signs’ importance:
μr for relevance and μt for time.

Relevance Impact. This aspect only affects to face-to-face and interest-based contri-
butions in Equation 2 (photos, videos, events and groups). Face-to-face contribution is
obtained by:

TSu|f (v) = f(x(v, u))

where

x(v, u) =
∑

∀j∈PH(u,v)

d(|tagsj|) +
∑

∀j∈V D(u,v)

d(|tagsj|)

being |tagsj| de number of tags in the j-picture (or video) and d(|tagsj |) the result of
applying Equation 6. To obtain interest-based index, Equation 5, we use the following
contributions:

yd(v, u) =
∑

∀j∈(Gs(u)∩Gs(v))

d(|usersj |) +
∑

∀j∈(EVs(u)∩EVs(v))

d(|usersj |)

yo(v, u) =
∑

∀j∈(Gp(u)∩Gp(v))

d(|usersj |) +
∑

∀j∈(EVp(u)∩EVp(v))

d(|usersj |)

being |usersj | the number of users that are expected to attend j-event or are subscribed
in j-group, and d(|usersj |) the result of applying Equation 6.

Gradual Forgetting. Time, however, affects all Facebook signs: the older an inter-
action is, the lower its weight should be. Thus, applying the decreasing function, the
contributions to Equation 3 to calculate TSu|o(v) are as follows, being d(tj) the result
of applying Equation 6 to the time of the latest updated of j-Facebook sign:

xd(v, u) =
∑

∀j∈P (u,v)

d(tj) +
∑

∀j∈P (v,u)

d(tj) +
∑

∀j∈PM(u,v)

d(tj) +
∑

∀j∈PM(v,u)

d(tj)

xo(v, u) =
∑

∀j∈C(u,v)

d(tj) +
∑

∀j∈C(v,u)

d(tj) +
∑

∀j∈L(u,v)

d(tj) +
∑

∀j∈L(v,u)

d(tj)

In the case of calculating TSu|f (v), the new contribution to Equation 4 is:

78 S. Servia-Rodrı́guez et al.

x(v, u) =
∑

∀j∈PH(u,v)

d(|tagsj|) · d(tj) +
∑

∀j∈V D(u,v)

d(|tagsj |) · d(tj)

Finally, the new contributions to Equation 5 are as follow:

yd(v, u) =
∑

∀j∈(Gs(u)∩Gs(v))

d(|usersj |)·d(tj)+
∑

∀j∈(EVs(u)∩EVs(v))

d(|usersj |)·d(tj)

yo(v, u) =
∑

∀j∈(Gp(u)∩Gp(v))

d(|usersj |)·d(tj)+
∑

∀j∈(EVp(u)∩EVp(v))

d(|usersj |)·d(tj)

5 Experimental Evaluation

Our evaluation is focused on three stereotyped Facebook users: (1) users having many
friends that usually interacts with only a few of them (our instance is user A, which has
130 friends as the average Facebook user [3]); (2) users having only a few close friends
and interacting with all of them (our instance is user B having 11 friends); and (3)
users having a few friends with whom hardly interact (our instance is user C having 62
friends). With the objective of assessing the goodness of the previous formulation, we
have developed a Facebook application that uses its API to access the available infor-
mation the subscribers have upload in their Facebook profile. OAth 2.0 is the protocol
Facebook uses for authentication (users and applications) and authorization (applica-
tions). OAuth provides a method for clients to access server resources on behalf of a
resource owner (such as a different client or an end-user). It also provides a process
for end-users to authorize third-party applications to access to their server resources
without sharing their credentials (typically, a username and password pair), using user-
agent redirections. Facebook implementation of the OAuth 2.0 involves three different
steps: user authentication (users are prompted to enter their credentials), application
authorization (users are asked to authorize the application to access some of their in-
formation through permissions) and application authentication (using the application
secret, available from the Developer Application).

Since our objective is to retrieve information about subscribers’ activity in Face-
book, our application requires the following permissions (which are explicitly asked
to subscribers whenever they run our application): (i) basic information permission
(to access name, gender, profile picture, list of friends, networks and any other infor-
mation the subscriber have shared with everyone), (ii) offline permission (to access
the previous information anytime), (iii) permissions to access the subscriber’s mailbox
(read mailbox), wall-posts (read stream), photos (user photo), videos (user videos),
events (user events) and groups (user groups). Using this information, we are able to
obtain the tie strength index and all the data needed to this experimental evaluation.

5.1 Index Calculation

After several analysis, we have decided that the importance of the directed addressed-
signs (α) is 5 times greater than the opened ones, as well as 60% is the weight for

Mining Facebook Activity to Discover Social Ties 79

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% of friends

in
de

x

user 1
user 2
user 3

Fig. 2. TSA(x), TSB(x) and TSC(x)

online interactions, 25% for physical interactions and 15% for interest-based interac-
tions. Concretely, we have fixed α = 0.8, β = 0.6, γ = 0.25, μr = 0.035 y μt = 0.01.
We established these values because most of the users do not have many photos or, if
they have many, they are not tagged. Also, they attended events and were members of
groups with a lot of attendees (members), which indicated that this type of interaction
would not be very relevant for them. Also, we observed that online interaction was their
main type of interaction. Moreover, we consider that the importance of the event of in-
teraction loses half of its value when there are about 20 users tagged in a photo (video)
or members of a group (attendees an event) or when the event of interaction happened
approximately two months before the moment in which indexes are calculated.

Under these conditions, Figure 2 shows the results for each stereotyped user, A, B
and C. These results show that the value of the index is greater than 0.5 in, at most, the
23% of the considerate cases. It is in keeping with Wilson’s article [1], which indicates
that for most of the Facebook users, the large majority of interactions occur only across
a small subset of their social links.

Besides, the more spread the allocation attention across friends (or not friends) is, the
more difference exists among their indexes. For example, users B and C, who spread
their interactions among their friends more uniformly than A, have a lower slope. For
example, X is a very active user and has the same interaction signs with A and B,
however TSA(C) = 0.58 and TSB(C) = 0.009, as expected. Thus, the tie strength
index depends on how the allocation attention across friends is: high for A (A does not
pay attention to many of his or her contacts), whereas for C is much lower, since C
spreads his or her attention more uniformly among them.

5.2 Relevance and Gradual Forgetting

Now, we consider a user whose Facebook social graph is formed by 130 friends. We
study how the index varies using different values for the params that control relevance
and time (μr and μt). We chose this user because is similar than the average Facebook
user, who has 130 friends [3].

We consider interaction sign’s relevance and each kind of interaction separately. Fig-
ures 3(a) and 3(b) show how the index varies among the user’s friends, taking into ac-
count only face-to-face and interest-based interactions, respectively.

80 S. Servia-Rodrı́guez et al.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

friends

in
de

x

basic (μ
r
= 0)

importance (μ
r
= 0.23)

(a) Tie strength index (only face-to-face inter-
actions)

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

friends

in
de

x

basic (μ
r
= 0)

importance (μ
r
= 0.035)

(b) Tie strength index (only interest-based in-
teractions)

Fig. 3. Relevance influence in tie strength index

In graphic 3(a) we used μr = 0.23, which means that the importance of the inter-
action sign loses half of its value when there are 3 users tagged in a photo (video). In
this case, the index is similar when we take into account or not the relevance of the
interaction. The reason is that the user’s photos has hardly more than 3 people tagged
in them. To interest-based interaction (figure 3(b)) we fixed μr = 0.035, which means
that the importance of the interaction sign loses half of its value when there are about
20 attendees an event (or members of a group). In this case we observe differences if we
consider or not the relevance. When we do not consider it, for the 35% of the contacts
their index is zero, while if we consider it, this percentage rises to the 80% of the users.
The main reason is because most of the groups (events) have about 5000 members (at-
tendees), which means that the fact that the user belong to the group is irrelevant. For
example, the user B has a basic index of 0.68, while this value drops to 0 when the
relevance is considered.

Finally, we consider the importance of the time in each contribution to the index
(online, face-to-face and interest-based). In figures 4(a), 4(b) and 4(c), index variation
over the user’s friends is shown. We fixed μt = 0.01, μt = 0.002 and μt = 0, which
means that the event of interaction loses half of its value when it happened two months
or a year before the moment in which the index is calculated. The value μt = 0 happens
when time factor is not considered. We used the same value for the rest of the parameters
that in previous section.

Results of this study are shown in the figures 4(a), 4(b) and 4(c). We obtain that the
number of friends with index value is equal to zero is greater when we consider the
time factor in the interaction. Also, the lower μt is, the more friends have index 0. It is
keeping with Wilson’s article [1], which indicates that the lower the size of the temporal
window in which the interactions happened is, the lower the number of friends with the
user interacts is. Also It makes sense that a friend who is only tagged in some photos
uploaded 2 or 3 years ago has an index 0 when we consider the importance of the time
in the interaction. On the other hand, a friend that is tagged in few photos may have a
greater index than another friend tagged in many older photos when we consider the
importance of the time in interactions.

Mining Facebook Activity to Discover Social Ties 81

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

friends

in
de

x

basic (μ
t
= 0)

time decay (μ
t
= 0.002)

time decay (μ
t
= 0.01)

(a) Tie strength index (only online interac-
tions)

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

friends

in
de

x

basic (μ
t
= 0)

time decay (μ
t
= 0.002)

time decay (μ
t
= 0.01)

(b) Tie strength index (only face-to-face inter-
actions)

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

friends

in
de

x

basic (μ
t
= 0)

time decay (μ
t
= 0.002)

time decay (μ
t
= 0.01)

(c) Tie strength index (only interest-based in-
teractions)

Fig. 4. Time influence in tie strength index

6 Application Context

Our application to infer tie strength from Facebook interactions is part of the project
CLOUDIA3, which has the goal of defining a social-sensitive ecosystem to assist the
users in finding existing services in the cloud to satisfy their specific needs, and also to
detect and cater for new business opportunities in the form of services demanded but
not existing as a unique whole. To this aim, it will use information stored in the different
social networks in which the users may participate.

In CLOUDIA, to find suitable services, the assistance has to be personalized to
each user, i.e. depending on user’s interests and needs, different services will be rec-
ommended. Last years, several collaborative filtering recommender systems have been
developed. All of them are based on the premise that users who have historically had
similar interests will probably continue having it into the present. An important issue
in these systems is finding a set of users, known as neighbors, that have a history of
agreeing with the target user (having rated different services similarly, tending to use
similar set of services,...). Moreover, several authors, like O’Donovan and Smith [11],

3 http://gssi.det.uvigo.es/index.php?option=com content&view=
article&id=210&Itemid=439&lang=en

http://gssi.det.uvigo.es/index.php?option=com_content&view=article&id=210&Itemid=439&lang=en
http://gssi.det.uvigo.es/index.php?option=com_content&view=article&id=210&Itemid=439&lang=en

82 S. Servia-Rodrı́guez et al.

mySocialSphere

Inferred global
social sphere

Service
recommender

Social media
dashboard

Social reminder
service

e-mail client

Inferred partial
social spheres

Fig. 5. Inferring social ties application

have improved neighborhood formation taking into account, besides similarity between
profiles, social influence or trust between users. As in real life, when we look for an
advice for a service (health, commerce, learning,...) we will often turn to our friends, on
the basis that we have similar service preferences overall. In the case of applications, it
is necessary knowing who are user’s friends, i.e. users in which target user trusts when
looks for a recommendation. Likewise, intensity of social relationships often varies, and
recommender should be up on these changes. Since it is not feasible that users report
to the application, we may get users’ ties from social networks sites in which they have
subscribed. However, as Wilson et al. [1] show, social network users usually tend to
interact with a few of their friends (they applied it to Facebook, but it can be general-
ized to the rest social networks). That is, a friendship relation on Facebook does not
necessarily indicate a real relationship between them. So, knowing which are the real
ties between a user and his friends is essential in social networks.

At this point, our application would come into play, taking care of monitoring users’
social networks activity and extracting, from this activity, users’ ties strength. From
them, the application will be able to build the users’ social spheres and, ultimately, find
the suitable services to them. Even though in this paper we focus on Facebook social
network, our goal is to extend the application to any social network.

In Figure 5 our proposal is shown: a social service, mySocialSphere, which lives in
the cloud and is in charge of monitoring and processing evidences of relationships to
build up the user’s social sphere. It builds up user’s partial social spheres using user’s
information obtained from automated queries to different social networks APIs, which
are combined to form the inferred global social sphere, which be used in CLOUDIA
to find suitable services to users. Apart from the functionality of services discovery,

Mining Facebook Activity to Discover Social Ties 83

existing services in the cloud may be socially-enhanced by the knowledge of users’
social ties. Examples of these services are indicated below.

Social Marketing. The integration of web publicity and social media is emerging as a
new trend in marketing. The idea behind it is that, by targeting the most influential users
in the network, we can activate a chain-reaction of influence driven by word-of-mouth,
in such a way that, with a very small marketing cost, a very large portion of the network
can be actually reached. An outstanding example in this scope is Groupon ([12]), a
deal-of-the-day website which offers discount coupons usable at several companies. In
order to increase its customers, Groupon allows users to refer friends to the site and, in
return for friends buying their first coupon, getting credits to spend in future coupons
purchases. In this case, the knowledge of users’ ties may help user to propagate coupons
inside his contacts with strong ties increasing, on this way, the coupons redemption and,
thereby, also the user’s credit.

Attention Management. Some e-mail readers, like Mail of Mac OS X, allow users to
define smart mailboxes, sorting mail into different folders depending on their content,
header, sender, etc. However, defining and updating mailboxes are tedious tasks. As
many received messages are from users’ contacts on social sites, knowing the strength
of their ties would help to suitably define smart mailboxes parameters and, even, to
prioritise incoming messages. Similarly to e-mail readers, social media dashboards, as
for instance HootSuite4 and TweetDeck5, are examples of tools in charge of managing
users’ attention organising users’ updates in different social networks. They allow users
to inspect their contacts activity and post new content without connecting to social
networks sites. If social media dashboards were aware of users’ social environment,
they could show only the updates from contacts with strong ties, avoiding to overwhelm
users with the updates. Finally, in the line of Shannon et al. [13], an interesting service in
the Ambient Intelligence scope would be one which take advantage of social spheres to
alert users to contact soon with certain friends to keep their social network in a healthy
state.

Contacts Management. Facebook allows users to create lists of contacts (Friendslists)
to share specific content with. Creating FriendsLists entails the user to assess their con-
tacts (friends) to include them in one Friendslists or another. Moreover, Facebook rela-
tionships change over time and, consequently, the contacts to include in the lists could
change too. For this reason, Facebook automatically creates smart lists whose mem-
bers are filtered according to profiles similarity. At this respect, combining similarity
with tie strength may be useful to improve these smart lists, so that they are composed
of contacts who share profile characteristics and, at the same time, they usually interact
(even in other social sites). The same idea may be applied to the Twitter case to organise
users’ followees in lists.

4 http://hootsuite.com/ Last accessed on 10/05/12.
5 http://www.tweetdeck.com/ Last accessed on 10/05/12.

http://hootsuite.com/
http://www.tweetdeck.com/

84 S. Servia-Rodrı́guez et al.

7 Discussion

This paper describes an approach to infer social ties from Facebook through its public
API, which is included in a large project to infer social ties from any social network in
the cloud. The solution goes one step further to integrate the various links maintained
by users in all their social networks sites, the ones in which they are registered. We are
interested in separating the sheep from the goats, i.e. separating the relevant ties from
these other ties which are almost figurative. For instance, despite maintaining Facebook
a contact network, users are allowed to interact with people outside their contact net-
work (send a private message, tag a photo with, etc.). In the same way Twitter users can
retweet any post, even if they are not following the original poster. So, users may inter-
act frequently with users with who have not direct link in any social network. Reversely,
a user may have never interacted with another user with who shares a direct link in any
social network. So, considering the users’ activity and not only the figurative relation is
a more effective approach.

Our proposal is oriented to the construction of the user’s social sphere in the cloud
taking into account two different-nature contributions. Firstly, the interaction network
can be computed from the formulation in this paper by extending the online, face-to-
face and interest-based interactions to other social network sites. Secondly, the topo-
logical networks, i.e. the real links which the user maintains (and implicitly accepts) in
a plethora of social services. We make out the topological network as a surface where
social tie strength is deployed. So, to obtain the social influence between two users we
consider (1) the tie strength inferred from their interaction and (2) the accumulate tie
strengths of paths through, at most, one intermediate user (in Facebook it would be be-
tween friends and friends of friends).

Although, in this paper, the tie strength is only based on Facebook interactions be-
tween friends, the proposed formulation may also be used to obtain the tie strength
between any two Facebook users, not necessarily friends6. Despite of the fact that at
first sight it is expected for two Facebook friends to have a stronger tie than two non-
friends, statistics show Facebook users only regularly relate with a small subset of their
130 friends, on average [3]. Thus, it is perfectly possible for them to have more inter-
action with a non-friend than with one of their friends, which must not be ignored to
obtain the users’ social sphere.

Besides, and as aforementioned, users’ social sphere should be obtained not only
with the Facebook data, but also taking into account their interactions in other social
networks. Along this line, we are currently working on extending this approach to other
social sites having a public API and adapting the interactions in each social network
accordingly to our classification (online, face-to-face and interest-based interactions).
For instance, in Twitter, retweets, replies or private messages would be included into
the online category, as well as private messages or photo comments in Flickr, private
messages in LinkedIn or Wall-posts, comments or +1 in Google+. However, tags in pho-
tos or videos in Google+, Picasa or Flickr would belong to the face-to-face category;
whereas interactions among users in the same group in Google+, Flickr, LinkedIn, etc.

6 Please, note that some of the signs, like wall-post are only available for friends, so the absence
of these contributions entails a reduction in the tie strength.

Mining Facebook Activity to Discover Social Ties 85

would be categorized as interest-based. Finally, interactions among users occur in any
Web 2.0 application, even if it does not have a declarative network as, for example, in
the case of blogs or wikis. Consequently, we bear in mind extending our proposal to
cover all the range of Web 2.0 application.

References

1. Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P., Zhao, B.Y.: User interactions in social net-
works and their implications. In: Proceedings of the 4th ACM European Conference on Com-
puter Systems, Nuremberg, Germany (2009)

2. Chen, W., Fong, S.: Social network collaborative filtering framework and online trust
factors: a case study on facebook. In: The 5th International Conference on Digital Infor-
mation Management (ICDIM 2010), Thunder Bay, Canada, pp. 266–273 (2010)

3. Facebook: Facebook statistics (2011)
4. Granovetter, M.: The strength of weak ties. American Journal of Sociology, 1360–1380

(1973)
5. Mutton, P.: Inferring and visualizing social networks on internet relay chat. In: Proceedings

of the Eighth International Conference on Information Visualisation, IV 2004, pp. 35–43.
IEEE (2004)

6. Tyler, J., Wilkinson, D., Huberman, B.: E-mail as spectroscopy: Automated discovery of
community structure within organizations. The Information Society 21, 143–153 (2005)

7. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.: On the evolution of user interaction in
facebook. In: Proceedings of the 2nd Workshop on Online Social Networks, Barcelona, pp.
37–42 (2009)

8. Backstrom, L., Bakshy, E., Kleinberg, J., Lenton, T., Rosenn, I.: Center of attention: How
facebook users allocate attention across friends. In: Proceedings of the 5th International
AAAI Conference on Weblogs and Social Media (2011)

9. Gilbert, E., Karahalios, K.: Predicting tie strength with social media. In: Proceedings of the
27th International Conference on Human Factors in Computing Systems, pp. 211–220. ACM
(2009)

10. Kahanda, I., Neville, J.: Using transactional information to predict link strength in online
social networks. In: International AAAI Conference on Weblogs and Social Media, ICWSM
(2009)

11. O’Donovan, J., Smith, B.: Trust in recommender systems. In: IUI 2005: Proceedings of the
10th International Conference on Intelligent User Interfaces, pp. 167–174. ACM Press, New
York (2005)

12. Byers, J., Mitzenmacher, M., Potamias, M., Zervas, G.: A month in the life of groupon. Arxiv
preprint arXiv:1105.0903 (2011)

13. Shannon, R., Kenny, E., Quigley, A.: Using ambient social reminders to stay in touch with
friends. International Journal of Ambient Computing and Intelligence (IJACI) 1, 70–78
(2009)

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 86–101, 2013.
© Springer International Publishing Switzerland 2013

Secure Biometric-Based Authentication for Cloud
Computing

Kok-Seng Wong* and Myung Ho Kim

School of Computer Science and Engineering, Soongsil University,
Sangdo-Dong Dongjak-Gu, 156-743 Seoul Korea

{kswong,kmh}@ssu.ac.kr

Abstract. Over the past several years, many companies have gained benefits
from the implementation of cloud solutions within the organization. Due to the
advantages such as flexibility, mobility, and costs saving, the number of cloud
users is expected to grow rapidly. Consequently, organizations need a secure
way to authenticate its users in order to ensure the functionality of their services
and data stored in the cloud storages are managed in a private environment. In
the current approaches, the user authentication in cloud computing is based on
the credentials submitted by the user such as password, token and digital
certificate. Unfortunately, these credentials can often be stolen, accidentally
revealed or hard to remember. In view of this, we propose a biometric-based
authentication protocol to support the user authentication for the cloud
environment. Our solution can be used as the second factor for the cloud users
to send their authentication requests. In our design, we incorporate several
players (client, service agent and service provider) to collaborate together to
perform the matching operation between the query feature vector and the
biometric template of the user. In particular, we consider a distributed scenario
where the biometric templates are stored in the cloud storage while the user
authentication is performed without the leakage of any sensitive information.

Keywords: Biometric-based Authentication, Cloud Authentication System,
Privacy Preserving Squared Euclidean Distance, Data Protection.

1 Introduction

Cloud computing is an emerging technology which allows users to request for
services and resources from their service providers in an on-demand environment. It
is a complex yet resource saving infrastructure for today’s modern business needs,
providing the means through which services are delivered to the end users via Internet
access. In the cloud environment, users can access services based on their needs
without knowing how the services are delivered and where the service are hosted.

The US National Institute of Standards and Technology (NIST) has defined cloud
computing as follows [1]: Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing

* This work was supported by the Soongsil University Research Fund.

 Secure Biometric-Based Authentication for Cloud Computing 87

resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider
interaction.

Hardware devices, software, storage and network infrastructure are made available
to user through Internet access. Rather than purchasing expensive but powerful
resources, users lease these resources from the service providers. With cloud
computing, user can access the services via Internet access regardless of time and
location. They also get rid of software installation in their local machine and able to
enjoy high availability of services. Furthermore, high efficiency and fast deployment
benefits are also the attractions for company and individual who moves to cloud
services. Due to the advantages such as flexibility, mobility, and costs saving, the
number of cloud user has increased tremendously. Industry analysts have made
projections that entire computing industry will be transformed into Cloud
environment [2].

In this Cloud-driven era, security and privacy concerns are becoming growing
problems for the user and the service provider. User authentication is often the key
issue in the Cloud environment. It is an important operation for the service provider to
verify who can access their services and to identify the group of each user. Some
commonly used authentication services include Kerberos [3] and OpenID [4]. The
service provider authenticates its users based on the credential submitted such as
password, token and digital certificate. Unfortunately, these credentials can often be
stolen, accidentally revealed or hard to remember. In view of this, we propose a
biometric-based authentication protocol that can be used as the second factor for the
cloud users to send their authentication requests. Biometric authentication can
improve the quality of authentication (QοA) in cloud environment. Our solution
ensures both security in the authentication and the privacy protection for all sensitive
information.

1.1 Problem Statement

Cloud computing is becoming an emerging technology in many organizations
especially those who require extra resources (i.e., processing power and storage) with
a lower cost. Recently, the adoption of cloud services within the organization raises a
significant security concerns among data owners when the data stored in the cloud are
sensitive data to the public or shared environment. For example, the customer details
are considered as sensitive data to the company and the data owner. The leakage of
sensitive information will compromise the individual privacy and allows the
competitors to gain the competitive advantages. Therefore, user authentication for
cloud computing is becoming important and need to be addressed when considering
sensitive data.

In this paper, we consider the user authentication for cloud computing in a
distributed environment where the biometric templates of the users are stored in the
cloud storage. To verify a user, several players will collaborate together to compare
the query feature vector of the user and the template stored in the cloud storage.

Biometric templates are uniquely representing strong identity information of its
owner. Although it provides a higher degree of security as compared with password
or security token, it could be stolen or exchanged. Hence, we must be careful when

88 Kok-Seng Wong* and Myung Ho Kim

dealing with the biometric data. There are several concerns should be addressed such
as which party the biometric data can be revealed and whether the biometric matching
operation is performed by the authentication server or the external trusted party. It is
therefore clear that designing a privacy preserved protocol to support the biometric
matching operation would have a great impact on the template protection and
preventing the leakage of biometric feature vector.

1.2 Organization

The rest of this paper is organized as follows: The background for this research is in
Section 2 and the technical preliminaries are described in Section 3. We present our
proposed solution in Section 4 followed by the analysis in Section 5. Our conclusion
is in Section 6.

2 Background

2.1 Cloud Computing Models

Cloud services are delivered in three fundamental models [5]: Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). IaaS is
the lowest level which is closest to the hardware devices whereas, SaaS is the highest
level that provides services to the end-users. The Amazon web service is one type of
IaaS which has been widely used since 2006 while the Salesforce.com CRM system is
an example of SaaS.

PaaS level provides an application platform in the cloud. Windows Azure platform
is one example of PaaS which enable the developers to build, host and scale their
applications in the Microsoft data centers. Recently, a new concept called “Everything
as a Service (XaaS)” has been adopted as the new trend in cloud computing. Several
vendors such as Microsoft and Hewlett Packard [6] have been associated with it.

Biometric Authentication as a Service (BioAaaS) has been defined as an approach
for strong authentication in web environments based on the SaaS model [7].

2.2 User Authentication

When performing authentication over the Internet, credential will be submitted by the
principal (the user, machine, or service requesting access) [8]. If the credentials
match, the user is allowed to access the services it subscribed from the service
providers. In this paper, we only consider user as the principal who submits its
credential for authentication over the cloud.

There are several types of credential the users can submit as proof of their identity.
Shared-key is typically password used protocols such as Password Authentication
Protocol (PAP) [9] and Challenge Handshake Authentication Protocol (CHAP) [10].

 Secure Biometric-Based Authentication for Cloud Computing 89

Fig. 1. General design for biometric-based authentication systems

Digital certificate is second type of credential which can provide strong
authentication in the cloud environment. It is an electronic document which uses a
trusted Certificate Authority (CA) to blind the encryption key with an identity [11].
Decryption key is the only way to validate the signed certificate.

Another type of credential is the commonly used one-time-password (OTP) [12,
13]. The end-user obtains the OTP from the token (hardware or software) during the
login time. The token can generate a randomized password string based on a complex
algorithm in real time. Since the password generated is unique and can only be used
once, OTP is possible to be used in the Cloud environment. For example, Amazon
Web Services (AMW) has already started to use its OTP token for use with individual
AWS accounts [14].

Recently, a German company BioID proposes the world’s first biometric
authentication service for cloud computing [15]. In their solution, biometric
authentication as a service (BaaS) has been proposed to provide single sign-on for
user authentication.

2.3 Biometric-Based Authentication

Biometric characteristics such as iris patterns, face, fingerprints, palm prints and voice
will be submitted by the user as the credential for authentication over the cloud.
Biometric-based authentication systems provide a higher degree of security as
compared with conventional authentication systems. Furthermore, it allows the
system to keep track of the user’s activities because individual biometric
characteristics cannot be shared with others.

Generally, biometric authentication systems consist of five modules, namely, the
biometric sensor, feature extractor, template storage, matching module, and the
decision module. Fig. 1 illustrates the general design for the biometric-based
authentication systems.

During the enrolment process, the biometric sensor scans the biometric traits of the
user while the feature extractor extracts the feature vector from the scanned biometric
data. The feature vector is then stored in the template storage.

At the verification stage, the biometric sensor and the feature extractor perform
the same tasks as in the enrolment process. However, the extracted feature vector

90 Kok-Seng Wong* and Myung Ho Kim

(query feature vector) will not be stored in the storage. Instead, it will be used by the
matching module to compare with the templates stored in the storage. The matching
operation outputs a similarity score which will be used by the decision module in
making the decision (accept or reject). The matching result is then compares with a
threshold value determined by the system administrator.

Biometric matching is the key operation in the biometric-based authentication
systems to verify the users. In practical, the same biometric trait will not produce two
identical feature vectors due to some noises or variations in the user’s interaction with
the biometric sensor. Hence, the biometric-based systems do not necessary to have
perfect match as required in the password-based authentication systems. The distance
between two feature vectors originating from the same user is typically greater than
zero (zero distance means both feature vectors are identical).

3 Technical Preliminaries

In this section, we describe some technical preliminaries for our protocol design.

3.1 Definition

Security Definition. In a generic sense, security is the prevention of unauthorized
party from gaining access to confidential information and system resources. A secure
authentication system needs to ensure only the authorized users can access to the
system. Therefore, we must prevent any adversary party from impersonate as an
enrolled user in our solution.

Our protocol is secure if no adversary party can gain access to the sensitive
information. Hereafter in this section, we refer sensitive information as the biometric
feature vectors (i.e., template and query feature vector), the verification code, and the
shuffle protocol.

During the authentication process, the protocol must prevents the adversary party
from reconstructing the original feature vector of the user based on the verification
code and the template stored in the cloud. Also, the network intruder who watches the
traffic on the network must not learn any sensitive information.

Privacy Definition. Information or data privacy is referring to the ability of an
individual or system to prevent the leakage of any sensitive information to any
unauthorized party. A privacy-preserved system should ensure that unauthorized party
does not improperly access confidential information.

In this paper, we particularly consider the privacy issues on the biometric template
and the verification code protections. The intermediate result during the
authentication process should not leak any sensitive information and the decision
module should not be able to distinguish whether two authentication requests belong
to the same user.

 Secure Biometric-Based Authentication for Cloud Computing 91

3.2 Homomorphic Cryptosystem

In this paper, we will utilize the additive property of the homomorphic cryptosystem
(i.e., Paillier [16]) in our protocol.
 Let 1()aE m denote the encryption of message 1m with encryption key, aE . The

scheme supports the following operations in an encrypted form:

• Addition: Given two ciphertexts 1()aE m and 2()aE m , there exists an efficient

algorithm h+ to compute 1 2()aE m m+ .

• Scalar multiplication: Given a constant c and a ciphertext 1()aE m , there exists an

efficient algorithm h⋅ to compute 1()aE c m⋅ .

Note that when a scheme supports the additive operation, it also supports scalar
multiplication because 1()aE c m⋅ can be achieved by summing 1()aE m successively

c times. By using the homomorphic cryptosystem, we can compute the additive
operation directly on the encrypted data without the decryption. This is a useful
feature because the biometric template stored in the server does not require decryption
during the matching operation.

3.3 Notations Used

In Table 1, we summarize all the notations used hereafter in this paper.

Table 1. Common notations used

X original feature vector extracted from the user during the enrolment process

Y original feature vector extracted from the user during the verification process

'X transformed vector during the enrolment process

'Y transformed vector during the verification process

''X shuffled vector during the enrolment process

''Y shuffled vector during the verification process

uπ shuffle protocol for the user U
'
ix i -th element of 'X

'
iy i -th element of 'Y

s squared Euclidean distance

n length of the original feature vector

m length of the verification code

k length of the transformed vector where, 4k n m= + +

TID template identification number

VID verification code identification number

uE encryption key from the user U

92 Kok-Seng Wong* and Myung Ho Kim

Table 1. Common notations used (cont.)

uD decryption key from the user U

pE encryption key from the service provider

pD decryption key from the service provider

()pkE ⋅ encryption operation by using the pkE

()pkD ⋅ decryption operation by using the pkD

ω random non-zero number

4 Proposed Solution

In our solution, the authentication process is based on two credential information: (1)
user’s biometric feature vector and (2) the verification code. Both parts must be
combined, transformed, and shuffled correctly in order for the user to successful
authenticate.

Like most existing biometric-based authentication systems, our solution requires
matching between the query feature vector (Q) and the biometric template (T). As
shown in Fig. 2, the matching operation is supported by the service provider and the
service agent over the cloud environment.

The similarity measure function used in biometric matching is based on the
characteristics of the biometric feature vector. For example, Hamming distance is
used for iris-based comparison while the squared Euclidean distance has been used in
finger codes matching. We consider the latter as our measurement metric in this
paper.

4.1 Components

We now formally describe the players in our proposed solution as follow: (as
illustrated in Fig. 2):

Fig. 2. Overview of our proposed solution

─ User: individual who sends the authentication request.
─ Client: computer or workstation with Internet access.
─ Service provider: company or organization who provides cloud services (SaaS,

PaaS or IaaS) to the user.

 Secure Biometric-Based Authentication for Cloud Computing 93

─ Service agent: separate entity which helps to transform the biometric feature
vector.

Unlike the conventional biometric systems, the template is the transformed feature
vector and will be stored in the cloud storage. The query feature vector is a
transformed feature vector. Like most existing biometric-based authentication
systems, our solution consists of both the enrolment and the verification processes. In
the following sections, we will describe in details the components and the
authentication workflows of our solution.

The Client has the Following Components:

• Biometric sensor: scans the biometric traits of the user.
• Feature extractor: extracts the feature vector from the scanned biometric data.
• Encryption module: encrypts the transformed and shuffled feature vector with the

correct encryption key (i.e., encrypts with the user’s key during the enrolment
process).

• Decryption module: decrypts the computation output.

The Service Agent Requires the Following Components:

• Transformation module: transforms the original feature vector and shuffles the
transformed feature vector.

• Verification code generator: generates unique verification code for the user.
• Verification code retrieval: retrieves the verification code for the user.
• Verification codes storage: stores the verification code for each user.

The Service Provider Requires the Following Components:

• Computation module: performs the squared Euclidean distance (s) computation
between the query feature vector and the template.

• Decision module: making the final decision by comparing the s with the given
threshold τ .

• Templates storage: stores the template of each user.

4.2 Enrolment

The objective of the enrolment process is to process the scanned biometric data and
extract a set of feature vector to be stored as the template for the user. The enrolment
process is required for the new user who wants to join the cloud. A successful
enrolment process enables the user to receive the TID and the VID .

4.2.1 Transformation

Let { }1 2, ,..., nX x x x= , 0n > and { }1 2, ,..., mV v v v= , 0m > be the feature vector

of the user and the verification code generated, respectively. We transform X into

94 Kok-Seng Wong* and Myung Ho Kim

X

()uE V

V

''X

('')uE X

{ , ('')}uTID E X

{ , ()}uVID E V

Fig. 3. The overview of the enrolment process

{ }'' | 1, 2,..., 4iX x i n m= = + + such that '
i ix x= for 1 i n≤ ≤ , '

n j jx v+ = for

1 j m≤ ≤ , ' '
1 2 1n m n mx x+ + + += = , ' 2

3 1
n

n m i ix x+ + == and ' 2
4 1

m
n m j jx v+ + == .

4.2.2 Shuffle Protocol
We require a shuffle protocol (uπ) to permute the order of elements in the

transformed vector 'X . We use the same shuffle protocol during the verification
process for the same user.

4.2.3 Overview of the Enrolment Process
We illustrate the overview of the enrolment process in Fig. 3 and the workflow as
follow:

1. The biometric sensor scans the biometric trait of the user.
2. The feature extractor processes the scanned biometric data to extract the feature

vector of the user, 1 2{ , ,..., }nX x x x= .

3. The feature extractor sends X to the transformation module of the service agent.
4. The verification code generator of the service agent generates a unique verification

code
1 2{ , ,..., }mV v v v= for the user.

5. The service agent computes ' 2V V= − and encrypts it by using the encryption key
of the user. The encrypted data will be stored at the verification codes storage.

6. Next, the transformation module transforms X into 'X . It shuffles the
transformed vector 'X i.e., '' (')uX Xπ= before sending it to the encryption

module.

 Secure Biometric-Based Authentication for Cloud Computing 95

7. The encryption module encrypts ''X by using the user’s encryption key. Finally,
the client sends ('')uE X to the service provider. The service provider stores

('')uE X as the user’s template in the templates storage.

4.3 Verification

When the user wants to access data stored in the cloud storages or uses the cloud
services, the user must be authenticated first. The verification process is responsible
to verify the users who they claim to be.

4.3.1 Transformation

Let { }1 2, ,..., nY y y y= , 0n > and { }1 2, ,..., mV v v v= , 0m > be the feature vector

extracted from the user and the verification code, respectively. The verification code
used must be the same in both enrolment and verification processes. We transform Y

into { }'' | 1, 2,..., 4iY y i n m= = + + such that ' 2i iy y= − for 1 i n≤ ≤ , ' 2n j jy v+ = −

for 1 j m≤ ≤ , ' 2
1 1

n
n m i iy y+ + == , ' 2

2 1
m

n m j jy v+ + == , ' '
3 4 1n m n my y+ + + += = . The length

for 'Y must be same as 'X which is 4k n m= + + .

4.3.2 Shuffle Protocol
We require the same shuffle protocol used in the enrolment process during the
verification process. The transformed feature vector 'Y needs to be shuffled in the
same order as 'X .

4.3.3 Overview of the Verification Process
The workflow for the verification process is as follow (as illustrated in Fig. 4):

1. The biometric sensor scans the biometric trait of the user.
2. The feature extractor processes the scanned biometric data to extract the feature

vector of the user, 1 2{ , ,..., }nY y y y= .

3. The feature extractor sends Y to the transformation module of the service agent.
4. Next, the service agent retrieves the verification code of the user based on the

user’s VID .
5. The verification code retrieval retrieves (')uE V of the user from the storage.

6. The transformation module computes ()(')u uD E V and transforms Y into vector

'Y . Next, it shuffles 'Y i.e., '' (')uY Yπ= and sends ''Y to the encryption

module of the client.
7. The encryption module encrypts ''Y with the service provider’s encryption key

pE . Next, the ('')pE Y is sent together with the TID to the computation module.

8. The computation module of the service provider retrieves ('')uE X from the

templates storage which is associated with the TID .

96 Kok-Seng Wong* and Myung Ho Kim

()uE V

('')uE X

{ , ('')}uTID E X

{ , ()}uVID E V

Y

''Y

TID

('')pE Y
()uE sω ⋅

()pE sω ⋅

Fig. 4. The overview of the verification process

9. If both ('')uE X and ('')pE Y have the same size, the computation module

computes:
i. Decryption: ()('') ''p pD E Y Y=

ii. Scalar multiplication: '' ('') ('' '')u uY E X E X Y⋅ = ⋅

iii. Homomorphic additive operation: ()()4 '' ''
1() n m

u u i i iE s E x y+ +
== ⋅

iv. Add noise: () ()u uE s E sω ω⋅ = ⋅ , where ω is a random non-zero

number.
The computation module sends ()uE sω ⋅ to the client.

10. The decryption module of the client decrypts ()uE sω ⋅ and then encrypts sω ⋅

with pE . Then, the decryption module sends ()pE sω ⋅ back to the decision

module of the service provider for making the decision. The decision module
decrypts ()pE sω ⋅ and makes the decision as follows (τ is the threshold

determined by the service provider):

,

,

Accept if s
decision

Reject if s

τ
τ

<
= >

Note that for different authentication requests, we may require different security
levels. Hence, our system can assign different threshold values for different users.

5 Analysis

In this section, we present the correctness, security, privacy and efficiency analysis
for our proposed solution.

 Secure Biometric-Based Authentication for Cloud Computing 97

5.1 Correctness Analysis

Our protocol correctly computes the squared Euclidean distance between the query
feature vector and the biometric template if all the players follow the protocol
faithfully. Let 1 2{ , ,..., }nX x x x= be the extracted feature vector of user A during

the enrolment process. It will be transformed into 'X as follows:

() ()
1 1

2 2
1 1

,..., , ,..., ,1,1,
'

,

n m

n m
i i j j

x x v v
X

x v= =

 =

 (1)

Then, we randomly shuffle the order of elements in 'X . Let '' (')AX Xπ= be the

shuffled vector by using the shuffle protocol Aπ . Next, we encrypt ''X by using the

encryption key AE and store the following result as the template of the user in the

templates storage:

() ()

1

1

2 2
1 1

(), ..., (),

(), ..., (),
('') (1), (1),

,

A A n

A A m

A
A A

n m
A i i A i j

E x E x

E v E v
E X E E

E x E v= =

 =

(2)

Note that for ease of explanation, we do not change the order of elements in Eq. (2).
Assume that 1 2{ , ,..., }nY y y y= is the query feature vector during the verification

process. The client retrieves the verification code from the service provider and
transforms Y into 'Y as follows:

() ()
1 1

2 2
1 1

2 ,..., 2 , 2 ,..., 2 ,
'

, ,1,1

n m

n m
i i j j

y y v v
Y

y v= =

− − − − =

 (3)

By using the same shuffle protocol Aπ (if the user is A), the client computes

'' (')AY Yπ= and encrypts ''Y with the encryption key PE to produce:

() ()

1

1

2 2
1 1

(2),..., (2),

(2),..., (2),
('')

, ,

(1), (1)

P P n

P P m

P n m
P i i P i j

P P

E y E y

E v E v
E Y

E x E v

E E

= =

− −
 − − =

 (4)

For ease of explanation, we do not change the order of elements in Eq. (4).
The squared Euclidean distance is computed as follow: The service provider first

decrypts ('')PE Y to obtain ''Y and computes the scalar multiplication for each i -th

element in ''Y and ('')AE X according to their index position:

98 Kok-Seng Wong* and Myung Ho Kim

 '' ('')AY E X⋅ ('' '')AE X Y= ⋅

() ()
() ()
() ()

()() ()()

1 1

1 1

2 2
1 1

2 2
1 1

2 () ,..., 2 () ,

2 () ,..., 2 () ,

(1) , (1) ,

1 , 1

A n A n

A m A m

n m
i i A j j A

n m
A i i A i j

y E x y E x

v E v v E v

y E v E

E x E v

= =

= =

 − ⋅ − ⋅

− ⋅ − ⋅ = ⋅ ⋅
 ⋅ ⋅

() ()
() ()

1 1

2 2
1

2 2
1 1

2 2
1 1

(2),..., (2),

(2),..., (2),

, ,

,

A A n n

A A m

n m
A i i A j j

n m
A i i A i j

E x y E x y

E v E v

E y E v

E x E v

= =

= =

− −
 − −

=

(5)

Next, the service provider computes homomorphic additive operation for each

() ()'' '' '' ''i ix y X Y⋅ ∈ ⋅ in Eq. (5):

() () () ()2 2 2
1 1 1 1() 2 2n m n m

A A i i i h A j j h A i i h A j jE s E x y E v E y E v= = = == − + − + +

() ()2 2
1 1

n m
h A i i h A i jE x E v= =+ +

 () ()2
1 1 2n n

A i i h A i i iE x E x y= == + −

 ()2
1

n
h A i iE y=+

 ()()2 2
1 2n

A i i i i iE x x y y== − +

()()2

1
n

A i i iE x y== −

(6)

After we decipher the result in Eq. (6), we can obtain the squared Euclidean

distance 2
1()n

i i is x y== − . Note that in Eq. (6), we eliminate the verification code

and all additional features. Hence, if the service provider retrieves the correct
verification code and the client computes ''Y correctly, our protocol outputs the
correct squared Euclidean distance for X and Y .

If one of the parties (either the client or the service provider) is not following the
protocol, the final output will not reflect the squared Euclidean distance for the two
vectors (X and Y). Subsequently, the verification process will fail and the user
cannot access the system. The client or the service provider who is not following the
protocol is considering as the malicious party in our protocol. The proof of this
theorem is same as the proof in Theorem 3 and Theorem 4 under the security analysis.

5.2 Security Analysis

In this section, we will analyse two possible attacks: internal and external attack.
Internal attack involves malicious party such as employee at client who attempts to
gain access into the cloud. External attack involves external parties (intruders or

 Secure Biometric-Based Authentication for Cloud Computing 99

network attackers) who watch the traffic on the network. They are interested in
learning some knowledge from the computation protocol or intercept the data in the
network. Note that internal attack is more serious as compared to the external attack
because attackers are having more knowledge about the protocol.

Our protocol is secure against malicious user who tries to gain access to the cloud.
Without the knowledge of sensitive information and the decryption key, the
authentication is not possible for attacker at the client side. During the enrolment
process, the system generates the biometric template for each user. Only the user who
enrolled into the cloud has its template and the verification code stored in the cloud
storages. In the absence of the template, the system cannot authenticate the user.

In our protocol, any malicious user who wants to pose as an enrolled user must
gain access to three sensitive information: (1) the verification code, (2) the original
feature vector and (3) the shuffle protocol. Since the verification codes and the
biometric templates are stored in an encrypted form, the attacker will not be able to
access them without the knowledge of the decryption key. If the attacker gains access
to the original feature vector of the user, he is not able to use it directly for the
verification process because the verification code and the shuffle protocol are not
accessible. In the worst scenario, if the attacker obtains the decryption key of any
user, the security for the user is still can be guaranteed. Hence, our protocol is secure
against attacker who tries to gain access to the cloud system.

Our protocol is secure against malicious service provider who tries to gain access
to the biometric templates stored in the cloud storages. The malicious service provider
is not able to reconstruct the original feature vector of any user in the absent of the
verification code. Furthermore, the templates are encrypted by using the encryption
key of each respective user. The service provider has no knowledge about the
decryption key. Gaining access to these encrypted vector is as difficult as attacking
the encryption algorithm. Brute-force attack is also impossible since all the templates
are different (after the encryption operation). Hence, our protocol is able to prevent
the malicious service provider from reconstruct the original feature vector of the user.

Network attacker who listens to the traffic is not able to learn any sensitive
information. In our protocol, all the data transmit over the network (between the client
and the service provider) are in an encrypted form (either encrypts with the user’s
encryption key or with the service provider’s key). When the network attacker
watches the network, he cannot learn any information because he has no knowledge
about the decryption key. During the verification process, network attacker is not
possible to be authenticated by the cloud because he has no knowledge about any
sensitive information. Hence, our protocol is secure against the network attacker.

5.3 Privacy Analysis

The privacy concern in our solution is the amount of information revealed during the
authentication process. Our protocol should ensure the confidentiality of all sensitive
information such that the intermediate results and the authentication result will not
compromise the privacy of the user.

In our solution, both the verification codes and the biometric templates are stored
in an encrypted form. The service provider is not able to learn anything because it has
no knowledge about the decryption key from the user. In the worst scenario, if the

100 Kok-Seng Wong* and Myung Ho Kim

decryption key of the user has been compromised, the service provider also not able
to identify the original feature vector of the user because the template has been
transformed with the verification code and being shuffled during the enrolment
process.

During the verification process, the service provider decrypts ('')PE Y before

performing the scalar multiplication operation. After the decryption, the service
provider is not able to distinguish between the original feature vector and verification
code. Hence, our protocol protects both the verification code and the template stored
in the cloud storages.

The service provider is not able to distinguish whether two authentication requests
belong to the same user. In our protocol, the verification code and the template are
stored separately by the service agent and the service provider, respectively. This
design prevents the malicious party from knowing which verification code is
associated with which template in the case when both storages are compromised. The
decision module makes the verification decision based on the similarity score
(squared Euclidean distance) and the threshold value determined by the system. If the
similarity score is lower than the threshold, it can reject the user. Otherwise, the
system verifies the user and the authentication process is successful. With only the
similarity score, the decision module is not able to distinguish whether two
authentication requests belong to the same user.

5.4 Efficiency Analysis

The total communication costs depend on the amount of data transferred during the
authentication process. During the enrolment process, the main computation cost incurs
is the generation of biometric template which requires (4)k n m= + + encryption. The

enrolment process only requires 1 round of communication in order for the service
provider to store the biometric template of the user. During the verification process, the
computation cost is dominated by the computation of the squared Euclidean distance.
The communication complexity incurred by the protocol is ()O k .

In terms of complexity, our protocol requires ()O k encryptions, ()O k scalar

multiplications and ()O k homomorphic additive operations.

6 Discussion and Conclusions

The biometric-based authentication offers many advantages over other existing
authentication methods. However, the processing time during the verification process
is a main concern in any biometric-based system. The integration of biometric-based
authentication into the cloud environment can benefit from the advantages of the
cloud computing such as extra resources and processing power.

In this paper, we proposed a biometric-based authentication protocol for cloud
computing. Our target is to achieve secure authentication while protecting the
sensitive information of users. We incorporate the homomorphic encryption scheme
into our matching protocol to compare both the query feature vector and the template
in an encrypted form. The measurement metric used in our protocol is the Squared

 Secure Biometric-Based Authentication for Cloud Computing 101

Euclidean distance. Our solution preserves the privacy of the sensitive information
and securely performs the authentication process in the cloud environment.

References

1. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. National Instituite of
Standards and Technology (2009)

2. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Gener. Comput. Syst. 25, 599–616 (2009)

3. Neuman, B.C., Ts’o, T.: Kerberos: An Authentication Service for Open Network Systems.
IEEE Communications 32, 33–38 (1994)

4. Recordon, D., Reed, D.: OpenID 2.0: a platform for user-centric identity management. In:
Proceedings of the Second ACM Workshop on Digital Identity Management, pp. 11–16.
ACM, Alexandria (2006)

5. Lenk, A., Klems, M., Nimis, J., Tai, S., Sandholm, T.: What’s inside the Cloud? An
architectural map of the Cloud landscape. In: Proceedings of the 2009 ICSE Workshop on
Software Engineering Challenges of Cloud Computing, pp. 23–31. IEEE Computer
Society (2009)

6. Fiveash, K.: HP sells cloud vision amidst economic downpour. Will customers get soaked
on transformation journeys? King’s College London (2008)

7. Senk, C., Dotzler, F.: Biometric Authentication as a Service for Enterprise Identity
Management Deployment: A Data Protection Perspective. In: Sixth International
Conference on Availability, Reliability and Security, Vienna Austria, pp. 43–50 (2011)

8. Convery, S.: Network Authentication, Authorization, and Accounting Part One: Concepts,
Elements, and Approaches. The Internet Protocol Journal 10, 2–11 (2007)

9. Lloyd, B., Simpson, W.: PPP Authentication Protocols. RFC Editor (1992)
10. Simpson, W.: PPP Challenge Handshake Authentication Protocol (CHAP). RFC Editor

(1996)
11. Canetti, R.: Universally Composable Signature, Certification, and Authentication. In:

Proceedings of the 17th IEEE Workshop on Computer Security Foundations, p. 219. IEEE
Computer Society (2004)

12. Haller, N.: The S/KEY One-Time Password System. In: Internet Society Symposium on
Network and Distributed Systems, pp. 151–157 (1994)

13. Rubin, A.D.: Independent one-time passwords. In: Proceedings of the 5th Conference on
USENIX UNIX Security Symposium, vol. 5, p. 15. USENIX Association, Salt Lake City
(1995)

14. Brooks, C.: Amazon adds onetime password token to entice the wary.
SearchCloudComputing (2009)

15. http://silicontrust.wordpress.com/2011/03/04/bioid-
announces-worlds-first-biometric-authentication-as-a-
service-baas/

16. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg
(1999)

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 102–116, 2013.
© Springer International Publishing Switzerland 2013

An Efficient and Performance-Aware Big Data Storage
System

Yang Li, Li Guo, and Yike Guo

Department of Computing, Imperial College London, U.K.
{yl4709,liguo,yg}@doc.ic.ac.uk

Abstract. Recent escalations in Internet development and volume of data have
created a growing demand for large-capacity storage solutions. Although Cloud
storage has yielded new ways of storing, accessing and managing data, there is
still a need for an inexpensive, effective and efficient storage solution especially
suited to big data management and analysis. In this paper, we take our previous
work one step further and present an in-depth analysis of the key features of fu-
ture big data storage services for both unstructured and semi-structured data,
and discuss how such services should be constructed and deployed. We also ex-
plain how different technologies can be combined to provide a single, highly
scalable, efficient and performance-aware big data storage system. We especial-
ly focus on the issues of data de-duplication for enterprises and private organi-
sations. This research is particularly valuable for inexperienced solution provid-
ers like universities and research organisations, and will allow them to swiftly
set up their own big data storage services.

Keywords: Big Data Storage, Cloud Computing, Cloud Storage, Amazon S3,
CACSS.

1 Introduction

The truth is that data growth is rapidly outpacing our ability to store, process and
analyse the data we are collecting. Cloud storage relieves end users of the task of
constantly upgrading their storage devices. Cloud storage services offer inexpensive,
secure, fast, reliable and highly scalable data storage solutions over the internet. Many
enterprises and personal users with limited budgets and IT resources are now out-
sourcing storage to cloud storage service providers, in an attempt to leverage the ma-
nifold benefits associated with cloud services. Leading cloud storage vendors, such as
Amazon S3 [1] and Google Cloud Storage [2] , provide clients with highly available,
low cost and pay-as-you-go based cloud storage services with no upfront cost. A va-
riety of companies have outsourced at least a portion of their storage infrastructure to
Amazon AWS, including SmugMug [3], ElephantDrive [4], Jungle Disk [5] and
37signals [3]. Recently, Amazon announced that as of June 2012 it currently holds
more than a trillion objects, and the service has so far been growing exponentially [6].
Even so, many enterprises and scientists are still unable to shift into the cloud envi-
ronment due to privacy, data protection and vendor lock-in issues. An Amazon S3

 An Efficient and Performance-Aware Big Data Storage System 103

storage service outage in 2008 left many businesses that rely on the service offline for
several hours and resulted in the permanent loss of customer data, [7, 8], an incident
that led many to question the S3’s “secret” architecture.

Enterprises and scientists use cloud storage services for various purposes, and files
are in different sizes and formats. Some use cloud storage for large video and audio
files, and some use it for storing large quantities of relatively small files; the variety
and range is vast. The different purposes of using cloud storage services give rise to a
significant diversity of patterns of access to stored files. The nature of these stored
files, in terms of features such as size and format, and the way in which these files are
accessed, are the main factors that influence the quality of cloud storage services that
are eventually delivered to the end users. Another challenge to the data storage com-
munity is how to effectively store data without taking the exact same data and storing
it again and again in different locations and storage devices. Data de-duplication and
other methods of reducing storage consumption play a vital role in affordably manag-
ing today’s explosive growth of data. However, no much research has been done on
how to efficiently apply these methods to big data services.

These reasons provide an incentive for organisations to set up or build their own
storage solutions, which are independent of commercially available services and meet
their individual requirements. However, knowledge of how to provide efficient big
data storage service with regards to system architecture, resource management me-
chanisms, data reliability and durability, as well as how to utilise all the resources,
reduce storage consumption, costs of backup and improve the quality of the services
remains untapped.

Taking one step beyond our previous work [9] to target large-scale data de-
duplication for enterprises and private organisations, we present the new CACSS, an
efficient and performance-aware big data storage system offering not only main-
stream cloud storage features, but global object data de-duplication and data caching
services specifically suited to big data management and analysis. A thorough demon-
stration of CACSS can offer full details on how to construct a proper big data storage
service, including design rationale, system architecture and implementation. This
paper demonstrates how different technologies can be combined in order to provide a
single and highly superior generic solution.

2 Related Work and Problem Analysis

Amazon Simple Storage Service (Amazon S3) is an online storage service that aims
to provide reliable and excellent performance at a low cost. However, neither its ar-
chitecture nor its implementation has yet been made public. As such, it is not availa-
ble for extension in order to develop the capability of creating private clouds of any
size. Amazon S3 is the leading de facto standard of bucket-object oriented storage
services. Successive cloud storage vendors, such as Rackspace [11] and Google Cloud
Storage [2] all adopt s3’s style of bucket-object oriented interface. This style hides all
the complexities of using distributed file systems, and it has proven to be a success
[12]. It simply allows users to use the storage service from a higher level: an object
contains file content and file metadata, and it is associated with a client assigned key;

104 Y. Li, L. Guo, and Y. Guo

a bucket, a basic container for holding objects, plus a key to uniquely identify an
object.

The cloud provides a new way of storing and analysing Big Data because it is both
elastic and cost-efficient. Additional computational resources can be allocated on the
fly to handle increased demand and organizations only pay for the resource that they
need. However, companies that work with big data have been unable to realize the
full potential of the cloud due to the Internet connections used to move big data in, out
and across cloud infrastructures are not quite as elastic. In addition, the high
read/write bandwidths that are demanded by I/O intensive operations, which occur in
many different Big Data scenarios, cannot be satisfied by current internet connections
[13, 14].

Besides Amazon S3, there have been quite a few efforts in cloud storage services,
including the following.

The Openstack [15] project has an object storage component called Swift, which is
an open source storage system for redundant and scalable object storage. However, it
does not support object versioning at present. The metadata of each file is stored in
the file’s extended attributes in the underlying file system. This could potentially
create performance issues with a large number of metadata accesses.

Walrus [16] is a storage service included with Eucalyptus that is interface-
compatible with Amazon S3. The open source version of Walrus does not support
data replication services. It also does not fully address how file metadata is managed
and stored.

pWalrus [17] is a storage service layer that integrates parallel file systems into
cloud storage and enables data to be accessed through an S3 interface. pWalrus stores
most object metadata information as the file’s attributes. Access control lists, object
content hashes (MD5) and other object metadata are kept in .walrus files. If a huge
number of objects are stored under the same bucket, pWalrus may be inefficient in
searching files based on certain metadata criteria; this factor can cause bottlenecks in
metadata access.

Cumulus [18] is an open source cloud storage system that implements the S3 inter-
face. It adapts existing storage implementations to provide efficient data access inter-
faces that are compatible with S3. However, details of metadata organisation and
versioning support are not fully addressed.

Hadoop Distributed File System (HDFS) [19] is a distributed, reliable, scalable and
open source file system, written in Java. HDFS achieves reliability by replicating data
blocks and distributing them across multiple machines.

HBase [20] is an open source, non-relational, versioned, column-oriented distri-
buted database that runs on top of HDFS. It is designed to provide fast real time
read/write data access. Some research has already been done to evaluate the perfor-
mance of HBase [21] [22].

For the past four decades, disk-based storage system performance has not im-
proved as quickly as its capacity. As a result, many large-scale web applications are
keeping a lot of their data in RAMs, and the role of RAM in storage systems has stea-
dily increased over recent years. For example, as of 2008 Facebook used over 28
terabytes of memory[23], and major Web search engines such as Google and Yahoo
keep their search indexes entirely in memory[24]. Google’s Bigtable storage system
[25] allows entire column families to be loaded into memory where they can be read

 An Efficient and Performance-Aware Big Data Storage System 105

without disk accesses. RAMCloud[26] is a DRAM-based storage system that provides
inexpensive durability and availability by recovering quickly after crashes.

Data de-duplication is a data compression technique for eliminating duplicate cop-
ies of redundant data. The de-duplication technology has been widely applied in disk-
based secondary storage systems to improve cost-effectiveness via space efficiency. It
is most effective in storage systems where many duplicates of very similar or identical
data are stored. Many studies on block-level and file-level data de-duplication have
been carried out. One of the challenges facing large-scale de-duplication enabled
storage systems is duplicate-lookup created bottlenecks due to metadata and actual
file data which is stored separately and the large size of the data index, which limits
the de-duplication throughput and performance[27-33].

CACSS is currently deployed on top of the IC-Cloud[34] infrastructure and is be-
ing used by over 200 internal students, especially those enrolled in the “Distributed
Systems and Cloud Computing” course. Several assignments, individual and group
projects rely heavily on the CACSS API to manage their data. Some other external
collaborators are also using CACSS as their data backup space. By monitoring the
data access patterns and analysing the actual data stored in our system, we discovered
two important characteristics that might help improve our system’s efficiency and
performance. We discovered that while some files were used intensively over a very
short period, much other data were hardly accessed. We also found over 20% dupli-
cated objects with the same checksums stored in our system. This issue of redundancy
is common and exists in many enterprises: a survey by AFCOM found that over 63%
of IT managers surveyed have seen a significant increase in their storage costs. One of
the main reasons for that dramatic increase is file sharing across different endpoint
devices and collaboration tools creating large amounts of data duplication.

These discoveries have motivated us to determine how we can improve perfor-
mance and make CACSS more efficient. Increasing the efficiency and effectiveness
of storage environments helps organizations improve their competitiveness by remov-
ing constraints on data growth, improving their service levels, and maintaining better
leverage over the increasing quantity and variety of data. While much research has
been done on data de-duplication and data caching in traditional file storage systems,
there is still a lack of research and evaluation for the big data environment in which
security, performance and reliability are becoming more crucial. Therefore we de-
cided to add in-line file-level de-duplication and object caching features to our cloud
storage system and evaluate them from the real environment.

3 System Design

The architecture of CACSS is shown in Fig. 1. From a conceptive level, it consists of
the following components:

─ Access interface: provides a unique entry point to the whole storage system
─ Metadata management service: manages the object metadata and permission con-

trols.
─ Metadata storage space: stores all of the object metadata and other related data.

106 Y. Li, L. Guo, and Y

─ Object operation manag
requests.

─ De-duplication controlle

─ Object caching controlle
─ Object data storage spac

store all of the object con

3.1 Access Interface

CACSS offers a web-based
objects. The current implem
standard commercial storag

3.2 Identity and Access

IAM is a separated service
resources. It offers sub use
which operations a user ca
be carried out.

3.3 Metadata Managem

To achieve high performan
tadata and content are com

Y. Guo

gement service: handles a wide range of object operat

r: manages global inline data de-duplication.

Fig. 1. CACSS Architecture

er: provides data caching as a service.
ce, global object storage space and object caching spa
ntent data in different circumstances.

d interface for managing storage space and searching
mentation supports Amazon’s S3 REST API, the prevail
ge cloud interface.

s Management Service

e that provides authorization and access control of vari
er, group management and precise permission control

an perform and under what conditions such operations

ment

nce in metadata access and operation, CACSS’s object m
mpletely separated. Each object’s metadata—including

tion

ace,:

for
ling

ious
l of
can

me-
g its

 An Efficient and Performance-Aware Big Data Storage System 107

system metadata such as size, last date modified and object format, together with user
defined metadata—are all stored as a collection of blocks addressed by an index in
CACSS’s Metadata Storage Space (MSS). MSS keeps all of the collections’ data
sorted lexicographically by index. Each block is akin to a matrix which has exactly
two columns and unlimited rows. The values of the elements in the first and second
columns are block quantifiers and block targets, respectively. All of the block quan-
tifiers have unique values in each block: BlockAൌൣai,j൧ 1im, 1j2, for any k,s אm, where k്s, ak,1്as,1

E.g. an index of W maps to a collection:

൮ቈܽଵ,ଵ ܽଵ,ଶܽଶ,ଵڭ ܽଶ,ଶڭ ൦ܾଵ,ଵ ܾଵ,ଶܾଶ,ଵ ܾଶ,ଶܾଷ,ଵ ܾଷ,ଶڭ ڭ ൪ ڮ ݀ଵ,ଵ ݀ଵ,ଶ݀ଶ,ଵ ݀ଶ,ଶ൨൲
3.4 Metadata Management Service

MMS manages the way in which an object’s metadata is stored. In such a system a
client will consult the CACSS MMS, which is responsible for maintaining the storage
system namespace, and they will then receive the information specifying the location
of the file contents. This allows multiple versions of an object to exist.

MMS handles requests as follows. First, it checks if a request contains an access
key and a signed secret key. CACSS consults AIM and MSS to verify whether the
user has the permission to perform the operation. If they do have permission, the re-
quest is authorized to continue. If they don’t, error information is returned. If a re-
quest does not contain an access key or a signed secret key, MMS is looked up to
verify if the request to the bucket or object is set as publicly available to everyone. If
it is set as public, then the request continues to the next step. All the requests are
logged, both successful and failed. The logging data can be used by both the service
provider and storage users for billing, analysis and diagnostic purposes.

Differing from traditional storage systems that limit the file metadata which can be
stored and accessed, MMS makes metadata more adaptive and comprehensive. Addi-
tional data regarding file and user-defined metadata can be added to the metadata
storage, and these data can be accessed and adopted on demand by users or computa-
tional works at any time. Searching via metadata is another key feature of CACSS.

Buckets. To reduce interoperability issues, CACSS adopts the de facto industry stan-
dard of buckets as basic containers for holding objects.

Unlike some traditional file systems, in which a limited number of objects can be
stored in a directory, a CACSS bucket has no limit. CACSS has a global names-
pace—bucket names are unique and each individual bucket’s name is used as the
index in the MSS. We use various block quantifiers and block targets to store a varie-
ty of information, such as properties of a bucket or an object, permissions and access
lists for a particular user, and other user defined metadata.

For example, for a bucket named “bucket1”, an index “bucket1” should exist,
which maps to a collection of data such as:

108 Y. Li, L. Guo, and Y. Guo

ۈۉ
ۈۈۈ
ۇ

ێێۏ
ۍێێ

: ݕ݁݇ bucket1: :ݎ݁݊ݓ :݊݅݃݁ݎ :ܾ݁ݓ :݁ݕݐ ݈݁ݒ݁ܮ݊݅ݐ݈ܽܿ݅ݑ݀݁݀
.݁݃ܽ1݇ݑ1݀݅ݎ݁ݏݑ ݈ܾ݈ܽ݃ݐ݁݇ܿݑܾ݈݉ݐ݄ ۑۑے

ېۑۑ
ሾ݉: 2݀݅ݎ݁ݏݑ ;ܦܣܧܴ :݉ݑሿሾ;ܲܥܣ_ܦܣܧܴ ݂݊݅ ሿݐ݁݇ܿݑܾ ܽ ݏ݅ ݏ݄݅ݐ ۋی

ۋۋۋ
ۊ

Objects. The index of each object is comprised of a string, which has the format of
the bucket name together with the assigned object key. As a result of this nomencla-
ture, objects of the same bucket are naturally very close together in MSS; this im-
proves the performance of concurrent metadata access to objects in the same bucket.

For example, for an object with the user-assigned key “object/key.pdf” in bucket
“bucket1”, an index of “bucket1- object/key.pdf” should exist, which maps to the
following collection of data:

ۈۉ
ۈۈۈ
ۈۈۈ
ۇ

ێێۏ
ێێێ
ۍ : ݕ݁݇ .ݕ݁݇/ݐ݆ܾܿ݁ :݂݀ :ݎ݁݊ݓ :݈ܿ :݁ݕݐ :ݐ݁݇ܿݑܾ :2݄ܽݏ ݉݀5

.݀݅ݑݑ/1ݐ݁݇ܿݑܾ/1ݎ݁ݐݏݑ݈ܿ//:ݏ1݄݂݀݀݅ݎ݁ݏݑ . 13ܿ20݀ܿ4ܽ766ܿ6݂݀7݀20ݐ݁݇ܿݑܾݐ݆ܾܿ݁. …20ܽ݀802ܾ8݂݀7ܿ9݂ܿ … . ۑۑے
ۑۑۑ
ې

ሾ݉: 1݀݅ݎ݁ݏݑ :݉ݑሿ;ܮܱܴܱܶܰܥ_ܮܮܷܨ ݎ݄ݐݑܽ :݉ݑݎ݄ݐݑܽ ݁݉ݏ ݎܽ݁ݕ 2011 ൨ ۋی
ۋۋۋ
ۋۋۋ
ۊ

Object Versioning. When versioning setting is enabled for a bucket, each object key
is mapped to a core object record. Each core object record holds a list of version IDs
that map to individual versions of that object.

For example, for an object with a predefined key “object/paper.pdf” in bucket
“versionbucket”, an index of "versionbucket െ object/paper. pdf" should exist,
which maps to the collection data:

ۈۉ
ۇۈ : :ݕ݁݇ :ݎ݁݊ݓ ݁ݕݐ object/paper.pdfݐ݆ܾܿ݁1݀݅ݎ݁ݏݑ ൩

 :ݎ݁ݒ ݐݏ݁ݐݏ݈ܽ :ݎ݁ݒ1݀݅ݑݑ ሺݐ݁݇ܿݑܾ݊݅ݏݎ݁ݒሻݎ݁ݒ1݀݅ݑݑ: ሺݐ݁݇ܿݑܾ݊݅ݏݎ݁ݒሻ2݀݅ݑݑ ൩ۋی
 ۊۋ

Similarly, the object’s version record with row key “versionbucket-
object/paper.pdf-uuid1” maps to the collection data:

൮ pp:loc
pp:type
pp:replicas

hdfs://cluster1/ݐ݁݇ܿݑܾ݊݅ݏݎ݁ݒ/uuid…
version
2

൩ሾpm:userid2 READ;ሿ ൲

 An Efficient and Performance-Aware Big Data Storage System 109

3.5 Object Data Management

CACCS stores all the unstructured data, such as file content, in the Object Data Sto-
rage Space (ODSS). ODSS is intentionally designed to provide an adaptive storage
infrastructure that can store unlimited amounts of data and that does not depend on
underlying storage devices or file systems. Storage service vendors are able to com-
pose one or multiple types of storage devices or systems together to create their own
featured cloud storage system based on their expertise and requirements in terms of
level of availability, performance, complexity, durability and reliability. Such imple-
mentation could be as simple as NFS [35], or as sophisticated as HDFS [19], PVFS
[36] and Lustre [37].

CACSS’s File Operation Management Service (FOMS) implements all ODSS’s
underlying file systems’ API, so that it can handle a wide range of file operation re-
quests to the ODSS. FOMS works like an adapter that handles the architectural differ-
ences between various storage devices and file systems. It works closely with MMS
to maintain the whole namespace of CACSS.

File Level Data De-Duplication. To enable data storage efficiency, CACSS has in-
troduced a De-duplication Controller (DDC) and a Global Object Storage Space
(GOSS) into the design. Currently, the DDC is only implemented to use a global file-
level de-duplication method, which manages how and where duplicated objects
should be stored in the GOSS. If a bucket is configured to enable data de-duplication,
all the objects in this bucket will be stored in the GOSS. It is extremely unlikely to
have a collision between two files with different content but the same SHA-256
checksum [38]. Therefore, CACSS uses SHA-256 hash function to calculate the
checksum of each incoming storing object, and if the checksum does not exist in the
MSS, a new de-duplication object metadata record with $ddes and the hash value as
the key will be inserted. The physical file content will be saved into the GOSS as a
new file. If the checksum already exists in the MSS, the record will be updated to
attach this object’s bucket name, object key and the user id (Fig. 2). e. g. Row key "$݀݀݁ݏ െ 80ܧܧ55ܦ814ܨ74ܦ4ܨ3ܦ … " maps to records:

ۈۉ
ۇ

ێێۏ
:ۍێ ൏ 1ݐ݁݇ܿݑܾ ൏ 1ݎ݁ݏݑ :1ݕ݁݇ ൏ 2ݐ݁݇ܿݑܾ ൏ 1ݎ݁ݏݑ :2ݕ݁݇ ൏ 3ݐ݁݇ܿݑܾ ൏ 2ݎ݁ݏݑ :3ݕ݁݇ ݁ݖ݅ݏ݈݂݁݅ ۑۑے19751324

ېۑ
ۋی
ۊ

Object Data Caching Facility. The ODCF contains the Object Caching Controller
(OCC) and Object Caching Space (OCS). With CACSS’s OCDF, it is possible to
cache certain frequently-accessed objects into the OCS. Such space provides multi-
level cache capability, accelerating data access. It can be implemented by a mix of
RAM, SSD and other high speed storage devices. The OCC keeps records of all ob-
ject data accesses, and manages a global object access ranking table. Depending on
the total spaces available on the OCS, the OCC intelligently decides which top ac-
cessed object data should be cached and where it should be cached. For example, the
most accessed object data will be copied into RAM, while medium accessed object

110 Y. Li, L. Guo, and Y

Fig. 2. Bucket

data or frequently accessed
SSD. When an object acces
the latest object data are lo
ODSS or the GOSS. We ha
which allows users to speci

4 Implementation

After considerable research
MSS storage for all object
dom data retrieval. Its colum
storing of data.

We chose Hadoop DFS
object data in the ODSS. H
be used for executing com
there is a single point of fa
research studies have been
HDFS NameNode, such a
represented as an object in
150 bytes. Therefore the to
of the number of files that
metadata and object data, C
ture that can store unlimite
still exposing a single logic

Y. Guo

t-Object to Global Object Storage Space mapping

d large files that cannot fit in to the RAM will reside in
ss request is received, the OCC first checks to determin
ocated in the OCS; if not, data will be returned from
ave also enabled the “Caching on Demand” service featu
fy exactly which object data should be cached.

n

h and experimentation, we chose HBase as the foundatio
metadata. HBase is highly scalable and delivers fast r

mn-orientation design confers exceptional flexibility in

(HDFS) as the foundational storage technology for stor
Hadoop also supports MapReduce framework [39] that
mputation tasks within the storage infrastructure. Althou

ailure at the NameNode in HDFS’s original design, m
carried out in order to build a highly available version

as AvatarNode [40]. Every file and block in HDFS
n the NameNode’s memory, each of which occupies ab
tal memory available on NameNode dictates the limitat

t can be stored in the HDFS cluster. By separating obj
CACSS is able to construct an adaptive storage infrastr
ed amounts of data using multiple HDFS clusters, wh
cal data store to the users (Fig. 4). Using Linux Ram D

the
ne if

the
ure,

onal
ran-
the

ring
can
ugh

many
n of
S is
bout
tion
ject
ruc-
hilst
Disk

 An Efficient and Performance-Aware Big Data Storage System 111

Fig. 3. Implementation of CACSS

technique, we employ server RAMs in Tomcat Clusters to serve as the Object Cach-
ing Space.

4.1 Multi-region Support

The design and architecture of CACSS are based on the principles of scalability, per-
formance, data durability and reliability. Scalability is considered in various aspects
including the overall capacity of multi-region file metadata and file storage, as well as
throughput of the system. Taking another perspective, the implementation of CACSS
consists of a region controller and multiple regions (Fig. 3).

A Tomcat cluster is used as the application server layer in each region. It is easy to
achieve high scalability, load balancing and high availability by using a Tomcat clus-
ter and configuring with other technologies such as HAProxy and Nginx [41, 42]. The
region controller has a MySQL cluster for storing various data such as user account
information and billing and invoice details.A bucket can be created in one of the re-
gions, and at the same time, a DNS A record is inserted into the DNS server. This
mapping ensures that clients will send a hosted-style access request of the bucket and
the object to the correct region. Each region is consistent with a Tomcat cluster, an
HBase cluster and a set of HDFS clusters. The object data is stored in one of the
HDFS clusters in the region. The object key and metadata are stored in the region’s
HBase cluster. It is always important to consider that any access to a bucket or object
requires access rights to be checked. In CACSS, each request goes through its region
first; if the requested bucket or object is set to be public, there is no need to communi-
cate with the region controller. If it is not set as public, it consults the region control-
ler to perform the permission check before making a response. The region controller,
which includes a MySQL cluster, keeps records of all the requests and maintains user
accounts and billing information. A DNS system (such as Amazon Route 53 [43])
serves to map the bucket name to its corresponding region’s Tomcat cluster IP. The
region controller can also connect to the existing IAM service to provide more sophis-
ticated user and group management.

112 Y. Li, L. Guo, and Y

Fig. 4. Implementation multi-

CACSS also adopts othe
a single file size and no lim
most of the objects are sto
under HDFS is a generated

The implementation of C
plete separation of file met
even multiple file systems,
under the IC-Cloud platform
systems through POSIX or

5 Experiments

We have done two sets of
Amazon EC2 instances, to
similar hardware and netw
Java S3 library, configuring
of CACSS.

We used one m2.xlarge
Units, to run MySQL, HD
CACSS application. Three
Compute units ran HDFS
stances was attached with
instances were configured w
We refer to these two instan

To evaluate the perform
Amazon S3 and CACSS. T
has been carried out previo
luate the overall throughput

Y. Guo

-region HDFS clusters for storing buckets and contents of obje

er useful features of HDFS such as no explicit limitation
mitation on the number of files in a directory. In CAC
ored in a flat structure in HDFS. Each object’s file na
UUID to ensure uniqueness.
CACSS does not need to rely solely on HDFS. The co
tadata from file content enables CACSS to adapt to one
, such as GPFS or Lustre. It is now deployed as a serv
m, and is expected to work with a variety of distributed
their APIs without much effort.

experiments so far. The first set was performed on top
enable the comparison of CACSS and Amazon S3 un

work environments. We used JetS3t [44], an open sou
g it with our experiment code to evaluate the performa

instance, with 17.1GB of memory and 6.5 EC2 Comp
DFS NameNode, HBase Hmaster and Tomcat with
m1.large instances, each with 7.5GB memory and 4 E
DataNodes and HBase Regionservers. Each of these
100GB volumes of storage space. Another two m1.la

with the same experiment code but different S3 end poi
nces as “S3 test node” and “CACSS test node.”

mance of CACSS, we ran a series of experiments on b
The evaluation of the performance of Amazon EC2 and
ously by [10]. A similar method was adopted here to e
t of CACSS.

ects

n on
CSS,
ame

om-
e or
vice
file

p of
nder
urce
ance

pute
the

EC2
in-

arge
ints.

both
d S3
eva-

 An Effi

Fig. 5. Cumulative Distributi
Amazon S3 and CACSS of var

Fig. 6. CDF plots for reading
sizes

Fig. 5 and Fig. 6 illustra
EC2 to Amazon S3, and o
contains traces of observed
1GB. Both Amazon S3 and
cause smaller size files wou
1MB, the average speed of
probably due to underlying
S3, such as hard drive RPM

Amazon S3’s List Objec
be returned at a time, so w
performance. However, we
ta management. We ran a
operations. All of the oper
utilised using an empty file
the performance of the met
time of each Put Object, wi
result shows an average res
each Put Object operation.
stant no matter how many
sponse time of each List A
objects contained in the bu

icient and Performance-Aware Big Data Storage System

ion Function (CDF) plots for writing transactions from EC2
rious sizes

g transactions from EC2 to Amazon S3 and CACSS of vari

ate respectively the write and read throughputs of Ama
of EC2 to CACSS, based on our experiments. Each gr
d bandwidths for transactions of 1KB, 1MB, 100MB
d CACSS perform better with larger transaction sizes,
uld require more transaction overhead. For files larger t
f transaction of CACSS is higher than Amazon S3; thi

g hardware differences between Amazon EC2 and Ama
M and RAID levels.
cts operation only supports a maximum of 1000 object

we could not properly evaluate its object metadata serv
 were able to run some tests to evaluate CACSS’s meta

a List All Objects operation after every 1000 Put Obj
ations were targeted to the same bucket. Each Put Obj
e, because for this experiment we were only interested
tadata access. Fig. 8 shows a scatter graph of the respo
ith respect to the total number of objects in the bucket. T
sponse time of 0.007875s and a variance of 0.000157s
This indicates that the response time is pretty much c
objects are stored in the bucket. Fig. 7 illustrates the

All Objects operation with respect to the total number
ucket. There are several peaks in the graph marked w

113

2 to

ious

azon
raph
and
be-

than
is is
azon

ts to
vice
ada-
ject
ject
d in
onse
The
for

con-
re-

r of
with

114 Y. Li, L. Guo, and Y

Fig. 7. List all objects

Fig. 9. CDF plots for object
CACSS of various sizes

red circle. These peaks are
instances during that time.
tween the response time and

The second set of exper
compare the effectiveness o
four virtual machines (VMs
and 4 CPU cores was used
Tomcat with the CACSS a
were each configured with 4
HBase Regionservers. The
downloading time with and
sizes. When object caching
speed for all object sizes, esp

6 Conclusions

In this paper, we described
age system, taking into acc

Y. Guo

s requests Fig. 8. Put Object requests

t downloading with and without Object Caching enabled f

caused by sudden network latency between Amazon E
 Otherwise, the overall result shows a linear relation
d the total number of objects.
riments was performed on top of the IC-Cloud in order
of the object caching mechanisms we implemented. We u
) to create a CACSS cluster. One VM with 8GB of mem
d to run MySQL, HDFS NameNode, HBase Hmaster
application and allocated RAM disk space. The other th
4GB memory and 2 CPU cores to run HDFS DataNodes
two graphs in Fig. 9 illustrate respectively the total obj

d without object caching enabled from CACSS of vari
was enabled, we saw an improvement in average downl
pecially for objects with sizes of 1MB and 50MB.

d the design and implementation of CACSS, a big data s
count the generic principles of data storage efficiency

from

EC2
be-

r to
used

mory
and

hree
and

bject
ious
load

tor-
and

 An Efficient and Performance-Aware Big Data Storage System 115

durability, scalability, performance and reliability. CACSS has been deployed on top
of IC-Cloud infrastructure since 2012 and has served as the main storage space for
several internal and external collaborative projects. CACSS delivers comprehensive
features such as data access through the S3 interface (the de facto industry standard),
native and user defined object metadata searching, global data de-duplication and
object data caching services. The storage model we propose offers service providers a
considerable advantage by combining existing technologies into a single customized
big data storage system. Furthermore, CACSS performance was found to be compa-
rable to Amazon S3 in formal tests, with similar read/write capabilities. We have seen
improvement in performance with object caching enabled through preliminary expe-
riments. However, there is still much improvement and evaluation work to be done on
the newly added features such as object data de-duplication and object data caching
services. These features will be addressed and their effectiveness validated in our
future work.

References

1. Amazon. Amazon Simple Storage Service (S3), http://aws.amazon.com/s3/
2. Google. Google Cloud Storage Service,

http://code.google.com/apis/storage/
3. AWS Case Study: SmugMug (2013)
4. http://aws.amazon.com/solutions/case-studies/elephantdrive/
5. AWS Case Study: Jungle Disk
6. Amazon, Amazon S3 - The First Trillion Objects (2012)
7. Gohring, N.: Amazon’s S3 Down for Several Hours
8. Brodkin, J.: Outage hits Amazon S3 storage service (2008)
9. Li, Y., Guo, L., Guo, Y.: CACSS: Towards a Generic Cloud Storage Service. In: CLOSER

2012, pp. 27–36. SciTePress (2012)
10. Garfinkel, S.L.: An evaluation of amazon’s grid computing services: EC2, S3, and SQS.

Citeseer (2007)
11. Rackspace. Cloud Files, http://www.rackspace.co.uk
12. Barr, J.: (2011)
13. Wang, G., Ng, T.E.: The impact of virtualization on network performance of amazon ec2

data center. In: 2010 Proceedings of the IEEE INFOCOM. IEEE (2010)
14. Garfinkel, S.L.: An evaluation of amazon’s grid computing services: EC2, S3, and SQS. in

Center for. 2007. Citeseer (2007)
15. Openstack, http://openstack.org
16. Nurmi, D., et al.: The eucalyptus open-source cloud-computing system. IEEE (2009)
17. Abe, Y., Gibson, G.: pWalrus: Towards better integration of parallel file systems into

cloud storage. IEEE (2010)
18. Bresnahan, J., et al.: Cumulus: an open source storage cloud for science. SC10 Poster

(2010)
19. Borthakur, D.: The hadoop distributed file system: Architecture and design. Hadoop

Project Website (2007)
20. HBase, A.: http://hbase.apache.org/
21. Carstoiu, D., Cernian, A., Olteanu, A.: Hadoop Hbase-0.20.2 performance evaluation. In:

2010 4th International Conference on New Trends in Information Science and Service
Science, NISS (2010)

116 Y. Li, L. Guo, and Y. Guo

22. Khetrapal, A., Ganesh, V.: HBase and Hypertable for large scale distributed storage sys-
tems. Dept. of Computer Science, Purdue University (2006)

23. Saab, P.: Scaling memcached at Facebook. Facebook Engineering Note (2008)
24. Barroso, L.A., Dean, J., Holzle, U.: Web search for a planet: The Google cluster architec-

ture. IEEE Micro 23(2), 22–28 (2003)
25. Chang, F., et al.: Bigtable: A distributed storage system for structured data. ACM Transac-

tions on Computer Systems (TOCS) 26(2), 4 (2008)
26. Ongaro, D., et al.: Fast crash recovery in RAMCloud. In: Proceedings of the Twenty-Third

ACM Symposium on Operating Systems Principles. ACM (2011)
27. Tianming, Y., et al.: DEBAR: A scalable high-performance de-duplication storage system

for backup and archiving. In: 2010 IEEE International Symposium on Parallel & Distri-
buted Processing, IPDPS (2010)

28. Yujuan, T., et al.: SAM: A Semantic-Aware Multi-tiered Source De-duplication Frame-
work for Cloud Backup. In: 2010 39th International Conference on Parallel Processing,
ICPP (2010)

29. Chuanyi, L., et al.: ADMAD: Application-Driven Metadata Aware De-duplication Archiv-
al Storage System. In: Fifth IEEE International Workshop on Storage Network Architec-
ture and Parallel I/Os, SNAPI 2008 (2008)

30. Quinlan, S., Dorward, S.: Venti: A new approach to archival storage. In: Proceedings of
the FAST 2002 Conference on File and Storage Technologies (2002)

31. You, L.L., Pollack, K.T., Long, D.D.: Deep Store: An archival storage system architecture.
In: Proceedings of the 21st International Conference on Data Engineering, ICDE 2005.
IEEE (2005)

32. Dubnicki, C., et al.: Hydrastor: A scalable secondary storage. In: Procedings of the 7th
Conference on File and Storage Technologies. USENIX Association (2009)

33. Jiansheng, W., et al.: MAD2: A scalable high-throughput exact deduplication approach for
network backup services. In: 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies, MSST (2010)

34. Guo, Y.-K., Guo, L.: IC cloud: Enabling compositional cloud. International Journal of Au-
tomation and Computing 8(3), 269–279 (2011)

35. Sandberg, R., et al.: Design and implementation of the Sun network filesystem (1985)
36. Carns, P.H., et al.: PVFS: A parallel file system for Linux clusters. USENIX Association

(2000)
37. Schwan, P.: Lustre: Building a file system for 1000-node clusters (2003)
38. Gilbert, H., Handschuh, H.: Security analysis of SHA-256 and sisters. In: Matsui, M.,

Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 175–193. Springer, Heidelberg
(2004)

39. Apache. Hadoop MapReduce, http://hadoop.apache.org/mapreduce/
40. Borthakur, D.: Hadoop avatarnode high availability (2010)
41. Doclo, L.: Clustering Tomcat Servers with High Availability and Disaster Fallback (2011)
42. Mulesoft, Tomcat Clustering - A Step By Step Guide
43. Amazon. Route 53, http://aws.amazon.com/route53/
44. JetS3t. JetS3t, http://jets3t.s3.amazonaws.com

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 117–134, 2013.
© Springer International Publishing Switzerland 2013

Towards Cost Aspects in Cloud Architectures

Uwe Hohenstein, Reto Krummenacher, Ludwig Mittermeier, and Sebastian Dippl

Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, D-81730 Muenchen, Germany
{firstname.lastname}@siemens.com

Abstract. One of the important aspects of Cloud computing is certainly the
pay-per-use model; users have to pay only for those resources they are actively
using, on a timely basis. This model paired with principally infinite resources
promises to run applications at lower costs, arguably.

This paper demonstrates by means of two case studies that applications in
the cloud can cause high operational costs depending on the building blocks
used. Different architectural decisions result in significantly different operation-
al costs. Costs should thus obtain much more attention when architecting for the
cloud.

Keywords: Cloud Computing, Cost-driven Architecture, Cloud Application
Design, Windows Azure Platform.

1 Introduction

Cloud computing has emerged to be the current highlight in terms of IT as a service.
A smart idea is in principle enough to start a new business [D.1]: no more need for
large cost expenditure, no need for over-provisioning and wasting expensive re-
sources, for not missing potential new clients. The main benefits of cloud computing,
without going into technical details yet, are the elasticity and high availability of (at
least theoretically infinite) hardware and software resources, the pay-as-you-go pric-
ing model, and the self-service administration of the resources. In more economical
terms, cloud computing has a very attractive benefit of turning CAPEX (capital ex-
penses) into OPEX (operational expenses).

Still, none of these features, functional or non-functional, comes for free. A scala-
ble architecture is essential for leveraging scalable cloud infrastructures [D.2], or in
other words, simply deploying existing enterprise software into the cloud does not
make the software more scalable or cloud-enabled. Cloud architecture best practices
are offered by most cloud utility providers, for instance Amazon AWS [D.3] or Mi-
crosoft Azure [D.4], with illustrations of how to design for failure, how to leverage
elasticity, how to decouple components and parallelize etc. These important guide-
lines of how to bring existing and new applications to the cloud are common and valid
for all cloud infrastructure offerings, although optimal software engineering decisions
might certainly depend on the particular cloud utility for which one implements the
cloud-enabled application.

There is, however, one important aspect, as we will argue throughout this paper,
which is (too often) forgotten, when specifying solution architectures for the cloud:

118 U. Hohenstein et al.

the operational costs of running an application in the cloud. In particular from an en-
terprise perspective, the maintenance and operations costs are highly relevant, and
they should thus have a significant impact on design decisions, as we exemplify and
discuss in this paper. The total costs of running an application are comprised of vari-
ous individual sources such as the charges for compute instances, storage, bandwidth
or different additional services. Depending on the cost model, one or the other indivi-
dual cost source will dominate the overall bill, and reducing the total cost can only be
done when minimizing the use of these dominating resources, already when defining
the architecture. Consequently, when architecting for the cloud, cost factors need to
be taken into account, and one might consider extending the “4+1 Architectural View
Model” by [D.5] with an operational cost view. While a modular design helps to re-
duce maintenance costs and ease evolution, the operational cost view would enable an
architect to illustrate the impact of the architectural decision on the overall expenses.

The similar line of arguments was expressed by Todd Hoff on HighScalabili-
ty.com: “Instead of asking for the Big O complexity of an algorithm we'll also have to
ask for the Big $ (or Big Euro) notation so we can judge an algorithm by its cost
against a particular cloud profile.” [D.6]. It shows that while turning to cloud deploy-
ments cost-centric architectures becomes even more important, as the costs are more
obviously accountable. Although, we are certainly by no means arguing that architec-
tures should be determined by cost measures, we emphasize that discussions about
architectural alternatives, about pros and cons with regard to costs have to be taken
into account much more prominently when choosing the appropriate architecture for
the cloud.

Existing work on cost-centric architectures is very few (cf. Section 5), and most
publications and white papers rather relate to a Total Cost of Ownership (TCO) com-
parison between on premise and cloud deployments, not taking into account the actual
architecture; for example, the Experton Group has published at business-cloud.de a
TCO Calculator that helps in assessing the cost advantages of deploying in the cloud.

In [D.7], we counterwork this trend, and showcase with concrete examples how ar-
chitectures impact the operational costs, once the decision to work in the cloud has
been taken. This paper is a revised version of [D.7], taking into account the recent
pricing models. As a technical basis for our work we are using the Windows Azure
platform and the corresponding pricing models. The main reason for working with
Windows Azure in the context of this paper is the comprehensive PaaS offering that
ships with a complete development and deployment environment and various relevant
by-products such as persistent storage, access control, or distributed cache. This has
also the advantage that there are no problems with the licensing of such products, as
these are part of the platform and the cost model. The latter, moreover, makes the
calculation of the architecture-dependent costs much easier.

In order to clarify the baseline, we continue the paper with a short introduction to
the core concepts of Windows Azure and its pricing model in Section 2. Then, we
present two scenarios that are derived from real-world business cases, and based on
that we will discuss and analyze the different architectural alternatives in Sections 3
and 4, respectively. In Section 5, we outline some related work with cost-centric as-
pects. During the practical part of our investigation, we detected some recommenda-
tions that are worth being reported on in Section 6, before the paper is concluded with
Section 7.

 Towards Cost Aspects in Cloud Architectures 119

2 Windows Azure and Its Pricing Model

In this section, we give a short introduction and overview of the core concepts of
Windows Azure including the pay-per-use model. Pricing details reflect the status quo
when writing this paper and will certainly change again in the future. However, re-
gardless of the pricing details of a specific cloud computing platform, the baseline
argumentation of this paper remains the same.

2.1 Core Concepts

Windows Azure provides virtual machines (VMs) that run Windows Server 2008 and
are available in two forms: a Web Role hosts an IIS (Internet Information Server) and
is foreseen to provide the front-ends for web applications such as ASP.NET. In con-
trast, a Worker Role does not possess an IIS and serves mainly as a host for backend
processes. The Web Roles offer different thread modes that can be configured, e.g., to
have a thread pool with delegating each request to the next thread.

Both types of roles can initiate Internet connections, however, instances of Web
and Worker Roles they are not directly accessible via the Internet. All network traffic
coming from outside to Web and Worker Role instances goes through a load balancer;
each role can specify an endpoint configuration by which protocol (e.g., HTTP(S))
and by which port it should be accessible. Incoming traffic is routed to role instances
in a round robin fashion; if there is more than one instance of a Web Role, subsequent
requests will be routed by the load balancer to different instances. Therefore it is not
an option to use the local file system of a Web Role for storing HTTP session data.
Rather, the Azure storage mechanisms, which are table storage, queue storage and
blob storage, can be used for data that needs to be processed in subsequent requests.
Similarly, Azure SQL Database, a managed SQL Server in the cloud, can be used.

Azure table storage allows for storing data in a tabular manner, however, it does
not enforce a fixed scheme; a row consists of a couple of properties and values, which
are stored without any predefined structure. Azure queue storage allows for FIFO-
style message passing between role instances. Each message can be up to 64 KB in
size. Finally, Azure blob storage allows for storing binary data such as images or
videos, which can be annotated with metadata. All the Azure storage services can be
accessed via a RESTful interface; i.e., an HTTP protocol-based web API. This way,
all programming languages with support for HTTP can use of the Azure storage capa-
bilities, from inside the cloud or outside. Apart from that, the Windows Azure storage
client library provides a more comfortable way for accessing the Azure storages.

An application built for Windows Azure runs in the context of a so-called hosted
service, which defines for example a public URL prefix as well as the geographical
region. Windows Azure applications are uploaded (deployed) to the public cloud
environment via the Azure web-based self-management portal to a specific hosted
service, either to a production deployment or a staging deployment. The production
deployment is accessible via the public URL of the hosted service whereas a deploy-
ment that is uploaded to the staging area is for testing purposes and thus only accessi-
ble via a URL generated by Azure. Staging and production deployments can be
swapped without service downtime.

120 U. Hohenstein et al.

2.2 Standard Rates

We here summarize the Azure prices as of February 2013 for the North America and
Europe regions; the Asia Pacific Region is more expensive. The recent standard rates
for Windows Azure can be found in http://www.windowsazure.comen-us/pricing
/details/.

Web and Worker Roles, are charged for the number of hours they are deployed.
Even if a role is used for 5 seconds only, a full hour has to be paid. As Table 1 shows,
there are several instance categories, small (S), medium (M) etc., which scale in a
linear manner with regard to equipments and prices. That is, a medium instance has
double of CPU, disk etc. than a small instance resulting in a double price. The excep-
tion is an XS instance category.

Table 1. Prices for Compute instances

 CPU RAM HDD (GB) MBps $ / h I/O performance
XS Shared 768MB 20 5 0.04 Low
S 1,6GHz 1,75 GB 225 100 0.12 Moderate
M 2 x 3,5 GB 490 200 0.24 High
L 4 x 7 GB 1000 400 0.48 High
XL 8 x 14 GB 2040 800 0.96 High

For Azure table, blob and queue storages, the costs depend on bandwidth, transac-
tion, storage consumption, and redundancy. Storage is billed based upon the average
usage during a billing period. For example, if 10 GB of storage are utilized for the
first half of the month and none for the second half of the month, 5 GB of storage are
billed for average usage. Each GB of storage is charged with $0.07 per GB for local
redundancy, and $0.095 for geographical redundancy. Storage consumption is meas-
ured at least once a day by Azure. Please note that the storage consumption takes into
account the physical storage, which consists not only of raw data, but also the length
of the property names, the data types, and the size of the actual data [D.8].

Moreover, any access to storage, i.e., any transaction, has to be paid: 100,000 sto-
rage transactions cost $0.01. Bulk operations, e.g., bundling several inserts in one
operation, count as one transaction.

All inbound data transfers to the Azure cloud are at no charge. The outbound trans-
fer is charged with $0.12 per outgoing GB,. It is important to note that the transferred
data has some typical XML overhead according to the protocol. Data transfer is for
free within the same affinity group, i.e., for VMs that run in the same data center. The
affinity group can be specified in the Azure self-service portal.

The costs for Azure SQL Database, a virtualized SQL Server, are also based on a
monthly consumption. One pays based on the total number of databases that existed at
any point during a particular day. Up to 100 MBs are charged with $4.995 a month
overall. Up to 1 GB, the overall price is $9.99. Any GB exceeding 1 GB costs $3.996.
Having reached 10 GB, the prices again decrease to $1.998 per additional GB, and
beyond 50 GB, a GB costs only $0.999. This means, a 10 GB is charged with
$45.954: $9.99 for the first GB, and 9 * $3.996 for the additional 9 GB.

 Towards Cost Aspects in Cloud Architectures 121

Finally, we want to mention the Azure Access Control Service for authentication,
which is charged with $1.99 per 100000 transactions.

There are also some flat rates where a fixed number of VMs is paid. For instance, a
6-month commitment (http://www.Microsoft.com/windowsazure/offers) mostly offers
a 20% off rate for resources. In case the given quotas (e.g., 750 free compute hours)
are exceeded, standards rates apply for overages. Furthermore, special offers exist for
MSDN subscribers, BizSpark, or MPN members. Those specific rates are out of scope
for this paper.

2.3 Special Quotas and Limits

There are some quotas active that define upper thresholds. For instance, every account
may run 20 concurrent small VMs (which is equal to 10 medium or 5 large ones)
and possess 5 concurrent storage accounts, each having its own credentials for access.
Higher numbers can be ordered, however, require negotiation with the Azure custom-
er service. Besides this, there are a couple of technical restrictions such as the payload
limit of 64 K for queues.

3 Scenario 1: Mass Data Store

This paper relies on two typical scenarios that occur quite often within Siemens.
However, the scenarios were simplified in order to ease the discussion and to obfus-
cate the business details.

The first scenario is concerned with mass data storage. Several data providers
(DPs) of given organizations provide data for a cloud-based mass data storage. The
data in the cloud storage is processed by applications for analysis or other purposes;
e.g., business intelligence or production process optimization. A more concrete exam-
ple is a fleet management system that manages cars; each car sends data about its
current state or position to a central cloud service. In this case the organizations are
car fleets, the data providers are individual vehicles or fleet owners, and the collected
data is processed further on to optimize fleet usage or the traffic management.

The following discussion is based upon several assumptions; most of them will be
relevant for the presented cost calculations:

• There are 5 organizations with 20 DPs each for a total of 100 DPs. Each DP sends
10 data items à 1 KB per second to storage. Both the frequency of 10 items per
second and the payload are assumed to be constant (varying loads are discussed
later in Subsection 3.5). In summary, 1000 items are thus arriving per second (100
DPs * 10 items/s) for a total payload of 1000 KB/s.

• No data will be removed; there is an increasing amount of data in storage.
• There is a transport latency from outside the cloud to the inside and vice versa,

which might of course vary depending on the overall network congestion. Howev-
er, the impact on the architecture is neglectably small since we assume an asynchr-
onous HTTP communication link between data providers and the cloud storage.
Hence, the DPs are just firing without waiting for a confirmation.

122 U. Hohenstein et al.

Please note the main purpose of this paper is neither to present a particular application
and its costs, nor to define the cheapest architecture for such. The given numbers are
(realistic) assumptions taken to calculate and compare occurring costs in the cloud.
Moreover, it is not our intention to assert a certain type of architecture; rather we want
to show how architectural choices can affect costs more or less dramatically. We also
recognize that changing the assumed numbers and SLAs could lead to different costs
and ranking of architectures. And there are certainly further possible architectures,
which are not discussed here.

3.1 The Web Role Approach

A couple of Web Roles (with threads running in it) receive data from all data provid-
ers, no matter of what organization. Threads of an appropriate number of Web Roles
store data into organization-specific storages. Thus, every organization has some
cloud storage of its own to keep its data – not at last due to security considerations: an
organization’s data must not be accessible by others. According to the incoming load,
more or less Web Roles can be started, having the IIS load balancer in front of them.
For the purpose of calculating costs, we fix some further system parameters:

• Small instances are taken for the Web Roles.
• We assume that each Web Role can run 10 threads without system overload. This

is a reasonable number that corresponds to Microsoft’s Best Practices, 2011 [D.9].
Our tests have shown that small Azure instances are already quite busy having 10
threads running.

• The Microsoft Extreme Computing Group published 2011 the results of several
benchmarks for Azure. Unfortunately, the web site [D.10] is no longer available.
Referring to the benchmarks, we assume that storing data from a Web Role into
cloud storage is typically done in 30ms.

• Additional 40ms are assumed at the Worker Role for client authentication, authori-
zation, and data pre-processing, including database access for getting credentials.

Summing up, this means that the processing of each incoming storage request in a
Web Role has some 70ms compute latency including all storage accesses. As a con-
sequence, one Web Role thread is able to handle about 14 requests in a second. Hand-
ling the 1000 incoming items/s (10 data items per second from 100 data providers)
thus requires minimally 70 threads. According to the benchmark results in [D.10], any
Azure storage solution should be able to handle a write throughput of 1000 items/s
performed by 7 Web Roles with 10 threads. With the assumption that each Web Role
can run 10 threads, 7 Web Roles with 10 threads each are needed to handle the re-
quested throughput; otherwise the IIS queue of the Web Roles will fill up, letting data
providers experience more and more latency. With a constant load, the IIS queues will
never be able to shrink, which moreover increases the risk of losing data.

As stated previously, essential for this paper are the operational costs of architec-
tures. The monthly costs for this first solution are as follows:

 Towards Cost Aspects in Cloud Architectures 123

• The complete inbound traffic to the Web Role is free of charge; since July 2011.
• Seven small Web Roles à 12ct per hour cost $604.80 for 30 days.
• Table storage (no removal assumed) with a daily increase of 82.4 GB (1 GB/month

à 7ct) results in further $89.40 if we consider the worst case that Azure monitors
storage consumption at the end of a day: 82.4 GB for the 1st day, a total of 2*82.4
GB for the 2nd day etc. sum up to 38316 GB in a month.

• 1000 storage transactions per second lead to 2,592,000,000 per month à 1ct per
100000: $259.20.

The total costs are $953.40. A quick conclusion shows that Web Roles produce the
main costs; but transactions and the storage also affect the costs.

An aspect not yet discussed is access control and security. Authentication becomes
necessary when working with Web Roles, as those are able to access all storage com-
ponents directly. In this architecture, authorization/authentication can be performed
by the Web Role, which is both an advantage and a disadvantage: On the one hand,
this provides better flexibility. But on the other hand, an additional authoriza-
tion/authentication component is required that incurs further costs, either for using
Azure Access Control ($1.99 for 100,000 transactions) or implementing one’s own
component. Anyway, the Web Roles have access to all cloud storages since they serve
all organizations.

Of course, the Web Roles can also perform some pre-processing, for example, ex-
tracting data from XML input, transforming data, or condensing data.

3.2 Queues at the Front-End

In an alternative architecture, each organization obtains one dedicated cloud queue at
the frontend. Data providers of each organization then put data items directly into
their respective queue using the provided REST interface for the queue storage.

Since there is no longer a front-end Web Role, authorization and authentication be-
comes an issue: it must be ensured that a data provider is only allowed to store in the
queue of its organization. In Azure, the credentials are bound to a storage account,
i.e., all queue or table storages belonging to the same account share the same creden-
tials. This implies that each organization would require an account of its own as other-
wise every DP would inherently get access to all queues. The quota of five storage
accounts that are granted per Azure account are just sufficient for our example; oth-
erwise additional storage accounts would have to be explicitly requested, however,
without any further expenses.

Threads in a Worker Role pick up data items from the queues and transfer them to
cloud storage. The number of requested Worker Roles (threads) depends on the time
for emptying queues and on the required timeliness of data in cloud storage. In fact,
the queue length must be close to empty, otherwise the queue will permanently in-
crease since the assumed load is constant. If data must be up-to-date in cloud storage
within fractions of a second, more Worker Roles (threads) are required to perform the
transfer. However, data provider throughput is not throttled by a too low number of

124 U. Hohenstein et al.

Worker Roles. There is no risk of data losses since queues are persistent, but an over-
flow might become critical.

We assume a queue read latency of 30ms and a typical storage write latency of
30ms (according to the Microsoft Extreme Computing Group [D.10]) for a total of
60ms. Then, one Worker Role thread is able to transfer an average of 16.67 items per
second; 60 Worker Role threads distributed over 6 Worker Roles (because of the 1/10
Worker Role/thread ratio) are required to keep pace with each of the 5 queues being
filled up with 200 items/s. It does not matter whether Worker Roles are assigned to
specific queues or serve all queues. Scalability with regard to incoming data is limited
only by queue throughput. The requested 200 items/s are easily achievable by Azure
queues according to Microsoft Extreme Computing Group. If necessary, more queues
could be set up, e.g., one for each data provider, which might share the same storage
accounts. The number of queues and accounts does not affect the total operational
costs as only the queued data and the transactions are charged but not the number.

The monthly costs for such a queue-based architecture are computed as follows:

• Incoming requests to the front-end queue are again for free.
• The background storage costs remain at $89.40.
• The storage transactions for background storage are still $259.20 as before.
• There are five newly introduced front-end queues with each queue getting in aver-

age 200 messages per second. As already mentioned, the Worker Roles will empty
the queues in order to keep pace with the input stream. But even if there are 10
messages in the queue at any point in time, requiring 50KB storage (5 queues * 10
KB) over 30 days, results in the micro-costs of 0.00035ct.

• There are three kinds of inbound and outbound transactions for the queues, one to
read a message, another to store, and a third one to delete the message; Azure does
not offer a mean to read and delete with one operation. This means high costs of
$777.60 = 3 * $259.20.

• Six Worker Roles are used each for a price of 12ct per hour for 30 days: $518.40.

Comparing the calculation with Subsection 3.1, we quadruple the transaction costs
from $259.20 to now $1026.80 with the benefit of reducing 7 Worker Roles to 6 Web
Roles and saving 86.40$ in a month for computation ($518.40 instead of $604.80). In
addition, there are smallest amounts of costs for queue storage (0.00035ct). Hence,
this architecture produces costs of $1644.60 per month and is thus about $691 more
expensive than the previous one.

Technically speaking, this architecture has some advantages. First, queues allow
for more flexible reactions to load changes. Queues can fill up (without causing do-
minating costs) to be emptied at later points in time, during low load times, if no time
critical data is involved. Consequently, an interesting alternative to the proposed set-
ting could let the queues fill up due to fewer Worker Roles, and use – if cheaper –
operating hours at night to transfer the data items to the backend storage. Having sto-
rage queues filled up does not call upon the same risks as IIS queues, as storage
queues are persistent. Second, the architecture can rely on Azure queue authentication
as a queue belongs to only one organization, and the data providers of an organization

 Towards Cost Aspects in Cloud Architectures 125

can only fill their organization’s queue. However, authentication becomes less
flexible.

As another disadvantage, additional implementation effort is required to set up the
Worker Roles in a multithreaded manner. In contrast, multithreading is for free in
Web Roles because of configurable instantiation models. Moreover, the transfer has
to be fault-tolerant due to the lack of storage-spanning transactions, deleting data in
the queue and inserting it into the backend storage. And the implementation must be
able to determine what data from the queue can be skipped if a crash occurs after
transferring to the backend but before deleting in the queue.

A further disadvantage of this architecture is the fact that the payload of queue
messages cannot exceed a 64 KB threshold in Azure. Hence, if the payload is un-
known or might increase, an architectural redesign is required: one possibility is to
use blobs for storing data, and to put a reference (URI) to the blob into the queue.
This causes additional storage and transaction costs for blobs and an additional delay
for data providers due to the blob handling.

3.3 Bulk Operations

This architecture is based upon the previous one, however, attempts to reduce the
number of expensive transactions by means of bulk operations. Azure provides to this
end a mean to build bulks of operations of the same kind.

At the front-end, there is no opportunity to bulk unless the data providers collect
data in bulks and submit bulks to the queues. But bulk operations can be used during
the internal processing: a Worker Role can fetch bulks of items from the queue, re-
move them in bulks, and submit bulks to the backend storage. This will in fact cause
some delay in processing and lacks a little of timeliness. Moreover, some implemen-
tation overhead occurs since it is necessary to wait for complete bulks. Some fault-
tolerance is again required: a Worker Role might crash while just having cached a
bulk. Data is not lost in that case since queues are persistent and still contain the data.

Even if the bulk size for queues is limited to 32 at maximum, it is possible to di-
vide the transaction costs drastically by 32. However, the queue API offers only the
possibility to get data in bulks, but not to delete bulks. Consequently, the cost for get-
ting data from the queue can be reduced from $259.20 to $8.10, but the other two
transaction types stay at $259.20 each. Bulk operations are also possible for the back-
end storage. The table storage offers writing bulks operations of at most 100 entities
and 4MB of size. This also reduces costs from $259.20 to $2.592 for queue retrieval.
The total transaction costs of $529.092 (2*$259.20 + $8.10 + $2.592) remain high.

As an alternative, table storage could be used instead of queues. This offers bulk
operations even for reads, writes and deletes. The challenge now is to mimic the
queue behavior. One possible way is to use table storage for each organization and the
data provider’s id as a partition key. Hence, it is easily and efficiently possible to
fetch the eldest 100 data items for a given data provider (using the timestamp in a
query), to store those items in the backend storage, and to remove them. In fact, there
is some implementation effort, e.g., to be sure that a bulk of 100 is available in order
to avoid polling, and to coordinate the Worker Role threads, i.e., who is accessing

126 U. Hohenstein et al.

which table. The transaction costs for the Worker Role can be divided by 100 from
$777.60 to $7.776. This makes the solution with $874.78 cheaper than the one in
Subsection 3.1 since $86.40 for compute instances are saved.

3.4 Direct Access to Cloud Storage

Another approach gets rid of Web or Worker Roles, in order to save costs. Data pro-
viders can store their data directly into blobs or tables; the post-processing applica-
tions then access the data provider’s storage directly.

Both blob and table storages are possible in this type of architecture. However,
blob storage has an important advantage over table storage: it offers fine-granular
security rights. Blobs are stored in containers and the access rights of each container
can be controlled individually even if the containers belong to the same account. In
contrast, table stores of the same account share the same credentials. Hence, blobs are
used in the following, each organization obtaining a container of its own. Note that
the number of containers does not affect the operational costs.

The throughput depends on the access capabilities of blobs; the requested through-
put of 200 items/s for each organization/container should be possible. Otherwise,
additional accounts or containers have to be ordered.

The costs in the first month are here as follows:

• The data storage costs remain the same, and sum up to $89.40.
• The costs for storage transaction are still at $259.20.

The conclusion is quickly made. With $348.60 operational costs in the first month,
this is the by far cheapest architecture – if applicable. The major benefit of this archi-
tecture is in fact the reduction of compute instances.

While financially the clear winner so far, technically this approach brings along
several disadvantages. First, the backend storage is not shielded from data providers
and the system fully relies on the authentication of the storage only. Furthermore, the
same storage technology must be appropriate for both data providers and processing
applications at the backend, but both might have different demands with regard to
throughput or query functionality. If blob storage (or table storage alternatively) does
not offer the requested functionality for backend applications, data will have to be
transferred into an alternative cloud storage, which again requires additional Worker
Role(s) and lets become the architecture similar to Subsections 3.2 or 3.3.

3.5 Load Variations

So far, we have discussed some constant load. We modify this assumption by assum-
ing the same overall load per day, however varying over the day. For example, the
load in a typical fleet management might be higher at 8-9 am and 5-6 pm.

Referring to Subsection 3.1, the IIS queues for Web Roles fill up during heavy
load. The requested throughput must be handled by setting up additional Web Roles;
the costs should be similar to a constant load if the data amount and transactions are

 Towards Cost Aspects in Cloud Architectures 127

the same over the whole day, i.e., there are less Web Roles at non-peak times. How-
ever, we pay a Web Role for one hour least. Not using complete hours could produce
higher costs! Moreover, we have to bear in mind the time for provisioning VMs.

In Subsection 3.2, the front-end queues fill up, but no more Worker Roles are re-
quired since the queues are persistent. If there are timeliness constraints, i.e., if data
must be mostly accurate in the back-end store, additional Worker Roles can reduce
queues. One important question is whether the throughput of the front-end storage is
enough. Well, there is still the opportunity to react on too high load with setting up
more queues, which requires much effort if to be performed online.

The same holds for the architecture in 3.3: if the throughput of the front-end sto-
rage is not sufficient, higher load could be handled with more accounts.

Handling load changes by the number of Web/Worker Roles, an hourly high load
is more positive than arbitrary load changes since charging is done for full hours. In
this respect, Worker Roles are more advantageous, because there is a chance of hav-
ing less Worker Roles: input throughput can be handled over a long period of time
without corrupting the required throughput. If the payment model offers a reduced
overnight rate, there will also be a chance of using Worker Roles over night at less
cost.

3.6 SQL Database Instead of Table/Blob Storage

Azure SQL Database might be a good alternative to table or blob storage owing to its
more powerful query mechanisms. Instead of REST, SQL Database is accessed via
the usual protocol as for ADO.NET, JDBC, Hibernate etc. offering the full power of
SQL. Keeping data in SQL Database is certainly reasonable if powerful evaluations
are required at the backend, leveraging the full power of SQL.

In the following, we discuss the operational costs for the architecture of the pre-
vious subsection with SQL Database replacing the blob storage. In fact, each organi-
zation should obtain a own set of databases for security reasons.

The total backend storage requirement remains at a daily increase of 82.4 GB,
which is 16.48 GB for each of the 5 organizations. SQL Database takes the daily peak
consumption and charges for both in 1 GB steps. That is, having a peak consumption
of 16.48 GB for the first day, the bill will charge 17 GB. The peaks of our scenario
are thus 17 GB for the 1st day, 33 GB for the 2nd, …, and finally 495 GB for the 30th
day (30* 16.48 GB). This means a total amount of 7677 GB for the first month and an
average of 255.9 GB per day. Consequently, one 150 database GB and another one
with 106 GB are required, being charged with $225.774 + $181.818 = $407.592 per
organization in the first month. The storage costs do not differ between for Web and
Business Editions.

The comparison is not precise. The table storage has some inherent storage over-
head for property names etc. (cf. Subsection 2.2). Hence, a record in SQL Database is
more compact than one in a table store and thus will consume much less storage.
Anyway, the costs for mass storage are quite high for SQL Database. In contrast to
blob/ table storage, the transactional costs are already included in the monthly fee.

128 U. Hohenstein et al.

It is important to note that Azure SQL Database currently has a cap of 150 GB per
database. This means for larger data amounts, a sharding concept must be imple-
mented that decides in which database to store data, how to handle an increase of data
etc. Moreover, backend queries have to be distributed over the shards since no distri-
buted queries are supported in SQL Database.

Anyway, the data will grow in future months and hence a sharding concept will
become necessary soon or later unless a clean-up occurs or the database size stays
below the 150 GB cap.

In fact, table storages provide a better flexibility since the structure of data does not
have to be defined in advance. This point might become important if the data format
changes from organization to organization or if the format changes over time.

4 Scenario 2: Data Delivery

In the second scenario, we suppose a large scale data delivery service being managed
in the cloud: data is pushed into the system and is maintained in some central cloud
storage. At the front end, customers expect to obtain their specific data from a cloud-
based delivery service. An example could be found in logistics where post orders to a
wholesale chain need to be collected, centrally managed and forwarded to individual
suppliers and freight carrier services. In order to better model this scenario, we as-
sume the backend storage to be filled once in the morning by some data provider for
the purpose of a higher throughput. We again postulate some basic assumptions:

• There are 16000 clients receiving items: 0 items for 8000 clients (50%), 1 item for
3200 (20%) and 2 items for 3200 (20%), and 5 items for 1600 (10%). This sums up
to 17600 items per day ((3200*1 item + 3200*2 items + 1600*5 items).

• Since each item has a payload of 50 KB, a total daily payload of 880000 KB is
produced.

• Searching one item in the storage takes 300 ms even if none is found.
• 4000 clients all want to fetch their items at 8 am, 12 am, and at 5 pm; 4000 clients

are equally distributed over the remaining times.
• As an SLA, clients should not wait longer than 1.5 seconds for being served.

4.1 The Web Role Approach

In the first architecture, several Web Role threads serve the clients: clients queue up
in the load balancer in order to ask a Web Role for data: a Web Role thread accesses
the storage to determine the data for that client and deliver the data while the client is
waiting. The appropriate number of Web Roles depends on the number of clients and
the given SLAs to clients.

We first focus on the three peak load times: the architecture has to serve 4000
clients at each peak time with clients of four types A to D:

A. 800 clients accessing 1 item (served within 300 ms)
B. 800 clients accessing 2 items (served within 600 ms)

 Towards Cost Aspects in Cloud Architectures 129

C. 400 clients accessing 5 items (served within 1500 ms)
D. 2000 clients accessing 0 items (served within 300 ms)

At first, we need to calculate the number of Worker Roles that are required to satis-
fy the SLA of clients being served within 1.5 sec. The number of Worker Roles
obviously depends on the arrival of client. The lowest number of Worker Roles is
required in the following situation:

• 400 times: a client of type C arrives and is served in 1500ms; each C client requires
an own thread.

• 400 times: a sequence of client types B,D,D,D (the last client of type D finishes
before 1500 ms)

• 400 times: a sequence of B,D,D,A
• 80 times: a sequence of A,A,A,A,A

This optimal schedule is rather unrealistic because it usually depends on the arrival
and the load balancer. Even in this best case 1280 Web Role threads
(400+400+400+80) are required all together. This results in 128 Web Roles with 10
threads each.

The costs can then be calculated as follows for each peak time a day (there are
three peaks a day):

• 128 Web Roles: Although the Web Roles are only required for 1.5 seconds, we
have to pay for the full hour à 12ct/h, i.e., $15.36.

• Storage transactions are required for getting and deleting data. The costs are 0.08ct
(4000 clients * 2 accesses * 1ct/100000).

• Outbound data transfer: 4400 items have to be delivered at each peak time for
2.64ct (4400 items * 50 KB * 12ct/GB).

• The backend storage is out of scope here.

Hence, we pay $15.39 for each of the 3 peak times, i.e., $46.17 for all peak times. In
addition, one further Web Role is needed for the remaining non-peak time of 21
hours:

• The Web Role costs $2.52 (21 hours * 12ct).
• Storage transactions (2 times for get/delete): 0.08ct (4000 clients * 2 accesses *

1ct/100000).
• Outbound data transfer: 2.64ct = 4400 items * 50 KB * 12ct/GB.

The total costs are $48.72 ($46.17 (peak) + $2.55 (non-peak)) per day.
The major disadvantage lies in the fact that every client checks periodically for

newly received data even if none has arrived. This produces a lot of load during peak
times which in turn requires Web Roles.

130 U. Hohenstein et al.

4.2 Storage-Based Architecture

As a storage-based alternative, we introduce a client-specific storage: there is one
account for each client in case of a table or queue store; using blob storage and client-
specific containers requires only one global account for all clients, but client-specific
credentials for containers. Worker Roles fetch data from the global storage and distri-
bute the data to those client-specific storages. Clients remove their data from this
storage right after pick up.

The client service time depends on the transport and access latency for storage. If
one blob storage account is used for all client blobs, 4400 accesses occur at each peak
time. In fact, according to [10], the available throughput is enough to fulfill the SLA
that the time for being served does not exceed 1.5 sec.

The number of Worker Roles and their starting time is only important to deliver
items in time before each peak time; obviously, starting Worker Roles early enough
reduces the number of required Worker Roles. Furthermore, the delivery of messages
into the global storage from outside is important. We here assume that data delivery
has finished before any client wants to receive his data. If one Worker Role performs
a “full scan” on all incoming 17600 items once a day and assigns the items to the
client storages, then retrieval takes less than 88 min (5280 sec = 17600 * 300 ms). If
one Worker Role is started with 10 threads, then the Worker Role must start 9 mi-
nutes before the first peak time. Afterwards, all the items are distributed.

The number of Worker Roles and threads is mostly irrelevant, since a Worker Role
is paid for each hour in use according to the payment conditions. The more threads (or
Worker Roles) are applied, the later processing can start, which is of few benefit only.
However, a strategy to define which thread searches what becomes necessary.

Let us now calculate the overall costs for one day, assuming that client storages are
filled in one step once a day, being ready for the first client.

• As explained above, the number of Worker Roles is mostly irrelevant; 1 Worker
Role with 10 threads is enough to finish in one hour and costs 12ct a day.

• Additional costs arise for the client storages from the beginning to the point a client
fetches items. A precise calculation is useless since even the worst case of keeping
the client items the whole day is ignorable: storing 880000 KB to be delivered in
the client storage for one day costs less than 7ct a month and 0.25ct per day.

• The additional outbound traffic from the backend store to the distributing Worker
Role is for free, if both are located in the same data center region.

• The daily transactions (17600 gets and deletes à 1ct/10000 for the backend store,
16000 read accesses for storage in client storage) cost 0.336ct.

• The outbound data transfer from the client storage to the client costs 10.56ct
(880000 KB * 12ct/GB) a day.

As a conclusion, there is an enormous cost reduction since much less Worker Roles
are used than in Subsection 4.1: this type of architecture produces only 23ct per day
instead of $48.

A variant of this architecture could transfer data by the Worker Role threads before
each peak time: then less storage costs are consumed, but three Worker Roles are

 Towards Cost Aspects in Cloud Architectures 131

required per day. Hence, there is no benefit because of cheaper storage prices and
more expensive Worker Roles. This approach might become useful if data will be
delivered to the global storage several times a day.

5 Related Work

A number of researchers have investigated the economic issues around cloud compu-
ting from a consumer and provider perspective. Indeed, Armbrust et al. identify in [1]
short-term billing as one of the novel features of cloud computing. And Khajeh-
Hosseini [11] considers costs as one important research challenge for cloud compu-
ting. But only little research has been done in this direction.

Youseff [12] discusses three pricing models that are used by cloud service provid-
ers: with tiered pricing, different tiers each with different specifications (e.g. CPU and
RAM) are provided at a different cost per unit time. A large tier machine has better
equipment but also has higher costs. Per-unit pricing is based upon exact resource
usage; for example $0.15 per GB per month. Finally, subscription-based pricing is
common in SaaS products such as Salesforce's Enterprise Edition CRM that charges
each user per month.

Walker [13] performs cost comparisons between cloud and on-premises. He states
that lease-or-buy decisions have been researched in economics for more than 40
years. Walker compares the costs of a CPU hour when it is purchased as part of a
server cluster, with when it is leased. Considering two scenarios – purchasing a
60000 core HPC cluster and purchasing a compute blade rack consisting of 176 cores
– the result was that it is cheaper to buy than lease when CPU utilization is very high
(over 90%) and electricity is cheap. The other way around, cloud computing becomes
reasonable if CPU utilization is low or electricity is expensive. Walker focuses only
on the cost of a CPU hour. To widen the space, further costs such as housing the in-
frastructure, installation and maintenance, staff, storage and networking must be taken
into account as well.

Klems [14] also addresses the problem of deciding whether deploying systems in a
cloud makes economic sense. He discusses some economic and technical issues that
need to be considered when evaluating cloud solutions. Moreover, a framework is
provided that could be used to compare the costs of using cloud computing with an in-
house IT infrastructure. Unfortunately, the two presented case studies are more con-
ceptual than concrete.

Assuncao [15] concentrates on a scenario of using a cloud to extend the capacity
of locally maintained computers when their in-house resources are over-utilized. They
simulated the costs of using various strategies when borrowing resources from a cloud
provider, and evaluated the benefits by using performance metrics such as the Aver-
age Weighted Response Time (AWRT) [16], i.e., the average time that user job-
requests take to complete. However, AWRT might not be the best metric to measure
performance improvements.

Kondo [17] examines the performance trade-offs and monetary cost benefits of
Amazon AWS for volunteered computing applications of different size and storage.

Palankar [18] uses the Amazon data storage service S3 for scientific intensive ap-
plications. The conclusion is that monetary costs are high because the service covers

132 U. Hohenstein et al.

scalability, durability, and performance, which are often not required by data-
intensive applications. In addition, Garfinkel [19] conducts a general cost-benefit
analysis of clouds, however, without any specific application.

Deelman [20] highlights the potentials of using cloud computing as a cost-effective
deployment option for data-intensive scientific applications. They simulate an astro-
nomic application named Montage and run it on Amazon AWS. Their focus was to
investigate the performance-cost tradeoffs of different internal execution plans by
measuring execution times, amounts of data transferred to and from AWS, and the
amount of storage used. Unfortunately, the cost calculation is not precise enough
because of the assumption that the cost of running instances on AWS EC2 is calcu-
lated on a per-CPU-second basis. However, AWS charge on a per-CPU-hour basis:
launching 10 instances for 1 minute would cost 10 CPU hours (not 10 CPU minutes)
on AWS. They found the cost of running instances (i.e. CPU time) to be the dominant
figure in the total cost of running their application. Another study [21] on Montage
concludes that the high costs of data storage, data transfer and I/O in case of an I/O
bound application like Montage makes AWS much less attractive than a local service.

Kossmann [22] presents a web application according to the TPC-W benchmark
with a backend database and compares the costs for operating the web application on
major cloud providers, using existing relational cloud databases or building a database
on top of table or blob storages.

Hence, we know about two studies [20] and [22] that take roughly our direction.

6 Recommendations

We want to present some recommendations that we derived from our investigation.
While a couple of papers such as [20] have identified compute instances as the

dominating cost factor, we have seen in the first scenario that transactional costs can-
not be neglected. Here, bulk transactions could help, if applicable.

Indeed, compute instances are quite expensive, particularly compared to storage.
Hence, one should try to minimize the number of compute instances, to allocate only
instances when really needed, and to stop compute instances that are no longer
needed. Strategies to adopt the number according to the recent load can help to react
on varying load. But caution has to be taken since collecting performance and diagno-
sis data produces additional storage and transaction costs. Note also that stopped
compute instances cause the same costs as running instances: an instance should be
deleted to avoid running costs while still retaining the service URL.

It is also important that the costs for the staging area are the same as for the pro-
duction environment. Hence, one should not forget to delete staging deployments
between or after test phases.

Acquired resources should be used efficiently. For example, it is possible to run
several web sites and web applications in one Web Role thanks to full IIS support.
The more cores a compute instance has (determined by the instance category), the
more parallel work a Web Role can handle. However, in most cases, it is better to use
smaller instance categories such as XS or S: smaller instances offer a better scaling
granularity while costs scale in a linear manner. In fact, there are also scenarios where

 Towards Cost Aspects in Cloud Architectures 133

a higher equipment such as 8 CPUs (XL), larger main memory, or bandwidth is rea-
sonable, e.g., to allow multi-core programming to a larger extent.

If the load seems to be quite constant, some special offers such as a Subscription
Offer (http://www.Microsoft.com/windowsazure/offers), enterprise agreements or
long-term subscriptions might be a choice to save costs.

7 Conclusions

Based on Microsoft’s Windows Azure platform offering, we have argued in this paper
for the importance of taking operational costs into account when designing the archi-
tecture for a cloud-based offering. Given examples have shown the impact particular
design decisions have on the cost of cloud applications; this is the important message
of the paper. However, the paper by no means values one architecture decision over
another but emphasizes the importance of considering the use and type of storage,
compute instances and communication services already at early stage, in particular
with respect to their impact on the operational costs.

The different architectural approaches and the resulting overall costs that at least
partly diverge significantly reveal one important problem when it comes to migrating
software to the cloud; the many dimensions of design decisions, and certainly the
many dimensions of the pricing models. The pricing ladders not only differ between
different providers in terms of charging units, special offers and free services, but
already within the offers of single companies, cf. davidpallmann.blogspot.com on
August 14, 2010: “The #1 hidden cost of cloud computing is simply the number of
dimensions there are to the pricing model. In effect, everything in the cloud is cheap
but every kind of service represents an additional level of charge. To make it worse,
as new features and services are added to the platform the number of billing consider-
ations continues to increase”. In other words, there is much more to cost-effective
architecture design than choosing the number and size of compute instances, or delet-
ing stopped staging deployments when not used.

While we have supported our arguments with tangible examples and experiences
we have gained from working with Windows Azure, there is further work required
towards concrete guidelines and best practices in cost-effective architecture design for
the cloud; also taking into account further features such as Azure AppFabric Cache,
special long-term subscriptions, and other cloud offerings such as for example Ama-
zon AWS or Google AppEngine.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patter-
son, D., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing. CACM 53(4)
(April 2010)

2. Hamdaqa, M., Liviogiannis, L., Tavildari, L.: A Reference Model for Devloping Cloud
Applications. In: Int. Conf. on Cloud Computing and Service Science, CLOSER (2011)

3. Varia, J.: Architecting for the Cloud: Best Practices. Amazon Web Services (January
2010-2011)

134 U. Hohenstein et al.

4. Pace, E., Betts, D., Densmore, S., Dunn, R., Narumoto, M., Woloski, M.: Moving Applica-
tions to the Cloud on the Microsoft AzureTM Platform. Microsoft Press (August 2010)

5. Kruchten, P.: Architectural Blueprints – The “4+1” View Model of Software Architecture.
IEEE Software 12(6) (November 1995)

6. Hoff, T.: Cloud Programming Directly Feeds Cost Allocation Back into Software Design.
Blog on HighScalability.com (March 6, 2009)

7. Hohenstein, U., Krummenacher, R., Mittermeier, L., Dippl, S.: Choosing the Right Cloud
Architecture - A Cost Perspective. In: Proc. on Cloud Computing and Services Science
(CLOSER), Porto, Portugal (2012)

8. Calder, B.: Understanding Windows Azure Storage Billing – Bandwidth, Transactions, and
Capacity, http://blogs.msdn.com/b/windowsazurestorage/archive/
2010/07/09/understanding-windows-azure-storage-billing-
bandwidth-transactions-and-capacity.aspx

9. Mizonov, V.: Best Practices for Maximizing Scalability and Cost Effectiveness of Queue-
Based Messaging Solutions on Windows Azure, http://msdn.microsoft.com/
en-us/library/windowsazure/hh697709.aspx

10. Microsoft Extreme Computing Group (2011): All Azure Benchmark Test Cases,
http://azurescope.cloudapp.net/BenchmarkTestCases (web site is now
offline!)

11. Khajeh-Hosseini, A., Sommerville, I., Sriram, I.: Research Challenges for Enterprise Cloud
Computing. In: 1st ACM Symposium on Cloud Computing, SOCC 2010, Indianapolis (2010)

12. Youseff, L., Butrico, M., Da Silva, D.: Toward a Unified Ontology of Cloud Computing. In:
Grid Computing Environments Workshop (GCE 2008), Austin, Texas, USA (November 2008)

13. Walker, E.: The Real Cost of a CPU Hour. Computer 42, 4 (2009)
14. Klems, M., Nimis, J., Tai, S.: Do Clouds Compute? A Framework for Estimating the Val-

ue of Cloud Computing. In: Weinhardt, C., Luckner, S., Stößer, J. (eds.) WEB 2008.
LNBIP, vol. 22, pp. 110–123. Springer, Heidelberg (2009)

15. Assuncao, M., Costanzo, A., Buyya, R.: Evaluating the cost-benefit of using cloud compu-
ting to extend the capacity of clusters. In: HPDC 2009: Proc. of 18th ACM Int. Sympo-
sium on High Performance Distributed Computing, Munich, Germany (June 2009)

16. Grimme, C., Lepping, J., Papaspyrou, A.: Prospects of Collaboration between Compute
Providers by means of Job Interchange. In: Frachtenberg, E., Schwiegelshohn, U. (eds.)
JSSPP 2007. LNCS, vol. 4942, pp. 132–151. Springer, Heidelberg (2008)

17. Kondo, D., Javadi, B., Malecot, P., Cappello, F., Anderson, D.P.: Cost-benefit analysis of
Cloud Computing versus desktop grids. In: Proc. of the 2009 IEEE International Symp. on
Parallel&Distributed Processing (May 2009)

18. Palankar, M., Iamnitchi, A., Ripeanu, M., Garfinkel, S.: Amazon S3 for Sciene Grids: A
Viable Solution? In: Data-Aware Distributed Computing Workship, DADC (2008)

19. Garfinkel, S.: Commodity Grid Computing with Amazon S3 and EC2. Login (2007)
20. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing science on

the cloud: the Montage example. In: SC 2008: Proceedings of the 2008 ACM/IEEE Confe-
rence on Supercomputing, Oregon, USA (November 2008)

21. Berriman, B., Juve, G., Deelman, E., Regelson, M., Plavchan, P.: The Application of
Cloud Computing to Astronomy: A Study of Cost and Performance. In: 6th IEEE Int.
Conf. on e-Science

22. Kossmann, D., Kraska, T., Loesing, S.: An Evaluation of Alternative Architectures for
Transaction Processing in the Cloud. ACM SIGMOD 2010 (2010)

23. Greenberg, A., Hamilton, J., Maltz, D., Patel, P.: The Cost of a Cloud: Research Problems
in Data Center Networks. ACM SIGCOMM Computer Communication Review 39, 1

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 135–150, 2013.
© Springer International Publishing Switzerland 2013

On-Demand Business Rule Management Framework
for SaaS Application

Xiuwei Zhang1,2,3, Keqing He1, Jian Wang1, Chong Wang1, and Zheng Li1

1 State Key Lab of Software Engineering, Wuhan University, Wuhan, China
2 School of Computer, Wuhan University, Wuhan, China

3 94005 Troops of PLA, Jiuquan, China
xiuweizhang@163.com,

{hekeqing,jianwang,cwang,zhengli_hope}@whu.edu.cn

Abstract. SaaS (Software as a Service) is becoming a new direction of software
industry in the new cloud computing era. SaaS applications and services must
be able to react in a fast and flexible way to ever changing business situations,
policies and products. In order to satisfy policy changes and other personalized
requirements from different customers (or tenants), business rule management
of SaaS needs to support multi-tenancy and online customization. This paper
proposed a business rule engine based framework for managing and decoupling
of business logic rule from SaaS application. It takes on-demand business rule
management as an independent and online maintainable part of SaaS applica-
tion, which could allow tenants to safely upgrade, delete or create rules during
runtime. Finally, a practical case study in Attendance Management System
(AMS) evaluates the effectiveness of the framework.

Keywords: Business Rule Engine, SaaS, Decision Table, Personalized Custo-
mization.

1 Introduction

With the emergence of Cloud Computing and maturity of Service Oriented Architec-
ture (SOA), SaaS delivery model has gained popularity due to advantages such as
lower start-up cost and reduced time to market. SaaS is the best way to adopt ad-
vanced technology and the most effective business model in the Cloud Computing
era. Typically in SaaS application, configurability, multi-tenancy and scalability are
the three key attributes to evaluate the maturity of SaaS application. SaaS vendor
owns and takes the responsibility of maintaining a single application for multiple
tenants who may have similar but also varying requirements [1]. The most ideal case
for SaaS vendors is that every tenant feel comfortable using a completely standardize
offering. However this ideal case usually does not happen in enterprise software ap-
plication area. Normally, such one instance is used by different tenants with different
personalized requirements in terms of data, process rules, and business rules (BR) [2].
In order to satisfy their maintainability of flexible business policy, we must decouple
the close relationship between business data and business logic.

136 X. Zhang et al.

Business Rule Group (BRG)1 believes that rules are a first-class citizen of the re-
quirements world. No matter in large enterprises or small and medium enterprises
(SME), business rules change very fast and need to be adjusted timely. Software sys-
tem is directly related to the business process within which it is a manifestation of
some business requirements for operational control and support of decision making
[3]. Nevertheless, many business rules have been bundled in program code or in data-
base structures, so it is very hard to upgrade and expand [4]. For SaaS application,
this problem becomes increasingly prominent because different tenant has different
rule variation. Many tenants are running on one instance with the availability of 24*7.
There may even be a situation where one tenant business rule changes may affect
other tenants and even cause the entire system to change. In order to dealing with this
kind of situation, the business rules of SaaS application need to be customized in a
flexible way, which enables any tenants to build, execute, manage, and evolve its own
rule-oriented applications. Rule engines allow the separation of business rules from
the applications that use them and enable the maintenance of business logic without
having to resort to code changes and software modification. Rule engine can be
viewed as a sophisticated interpreter of if-then statements. It can reach a conclusion
from a set of facts feed into it and trigger an appropriate action. So we can use busi-
ness rule engine to separate the business logic out of the SaaS application to support
online customization and multi-tenancy with the isolated rule file. Each tenant can
individually configure and upgrade his own business rules. Therefore rule indepen-
dency and isolation is an essential part in the development of SaaS application. In this
paper, a business rule engine-based framework was proposed to help the management
of business rule for SaaS application, which is convenient for tenants to change busi-
ness rules on-the-fly and minimize the downtime of the application during the busi-
ness rule upgrading or modification. Tenants with non-IT profession can on-line up-
date business rule in a simple spreadsheet and deploy them with a few clicks. It makes
SaaS application more robust and maintainable.

In this paper, we only focus on the business rule’s online customization and multi-
tenancy support. The next section identifies the related work and section 3 provides a
clear and concise description of the background. Section 4 demonstrates our frame-
work and provides explanation for our framework. Section 5 presents the implantation
representing our case study and is used to exemplify the potential of our approach.
Section 6 draws conclusions from our work and identifies the possibilities for future
work.

2 Related Work

Business rule management of software system is not a new issue. Many researchers
have done a lot in traditional applications. Initially, rule based software tools originate
from work carried out in the artificial intelligence (AI) research community. Compa-
nies were faced with the need to combine domain expertise with the flexibility to

1 http://www.businessrulesgroup.org/home-brg.shtml

 On-Demand Business Rule Management Framework for SaaS Application 137

write lots of “if x, then y” statements over a wide range of variables without resorting
to spaghetti code [5]. Orriens [6] and Vasilecas [8] have two main views in dynamic
business rule driven software system design. One of them is to design predefined
executable processes and execute them by using rules in software system, where
processes and execution rules are derived from business rules using transformations.
Another one is discussed in work [7], where business rules and facts describing cur-
rent business system state are loaded into inference engine of the software system and
transformed into software system executable data analysis process according to the
results of logical derivations. Computer scientists and programmers began developing
rule languages and the corresponding engines that could handle the conditions and
actions needed to satisfy the wide range of rules. The most successful approach for
doing this has proven to be the Rete algorithm [9]. Many rule-engine tools and appli-
cation development support environments was applied such as Blaze Advisor Builder,
BRS RuleTrack, Business Rule Studio, Haley Technologies, ILOG Rules, Platinum
Aion, etc [10].

In SaaS application, there is still lots of differences in business rule customization
with traditional applications. These differences include:

─ The business rule customization or configuration for SaaS applications should
support multi-tenant architecture and each tenant should have their own rule cus-
tomization.

─ Not to affect other tenants, SaaS providers could not suspend the system when
some tenants want to modify or upgrade the business rules.

─ The rule customization will be executed by administrator of tenant, not by devel-
opers of SaaS provider.

─ The business rule should be support Web-based online modification.
─ The customization of the business rules should be simplified and friendly.

The above differences between SaaS applications and traditional software have
raised many researches in this new area. Guo [11] proposed a multi-tenant supported
framework to support better isolations among tenants in many aspects such as securi-
ty, performance, availability, administration, etc. Zhang [12] proposed a SaaS-
oriented service customization approach, which allows service vendors to publish
customization policies along with services. If tenant’s customization requirement is in
agreement with policy after being verified, vendors will update service accordingly.
This approach will inevitably burden service providers because of tenants’ reasonable
customization requirement increments. Gong [13] developed ECA process orchestra-
tion architecture to create flexible processes. This architecture based on both know-
ledge rules (separating knowledge from processes) and event-condition-actions
(ECA) mechanisms to provide the highest level of flexibility. Configurability of SaaS
issue was addressed in literature [14] who researched the configurability like user
interface, workflow, data and access control from the different aspects of SaaS.
From the customization and configuration perspective, Sun [15] explored the configu-
ration and customization issues and challenges to SaaS vendors, clarifies the differ-
ence between configuration and customization. A competency model and framework
has been developed to help SaaS vendors to plan and evaluate their capabilities and

138 X. Zhang et al.

strategies for service configuration and customization. In literature [16], a flexible
business process customization framework for SaaS was proposed to solve problems
caused by orchestrating SaaS business process through BPEL specifications. Kapu-
ruge [1] discussed the challenges arising from single-instance to multi-tenancy, and
presented an approach of Serendip4SaaS to define business processes in SaaS applica-
tions.

To the best of our knowledge, no related work has combined the rule engine and
decision table with the SaaS application for multi-tenancy support and online custo-
mization. Our work was focused on the perspective of business rule customization
and configuration. In our framework, each tenant can update their personalized busi-
ness rule in SaaS application by online selecting and modifying corresponding rules.
Rule engine was utilized as the essential part to improve the flexibility and multi-
tenancy for SaaS application, which makes business rule as an independent and main-
tainable part of application.

3 Background

3.1 Business Rule Engine

In business, a lot of actions are triggered by rules: “Order more ice-cream when the
stock is below 100 units and temperature is above 25° C”, “Approve credit card appli-
cation when the credit background check is OK, past relationship with the customer is
profitable, and identity is confirmed”, and so on. Traditional computer programming
languages make it difficult to translate this “natural language” into a software pro-
gram. Business rule engine enables anybody with basic IT skills and an understanding
of the business to translate statements as running computer code [17]. Business rule
engine is a software system that executes one or more business rules in a runtime
production environment. It will test data objects quickly in the workspace, pick out
rules which meet requirement from loading rule sets, and generate an instance of rule
execution.

Fig. 1 shows the basic architecture of business rule engine. Pattern matcher decides
which and when rules will be implemented. The implementation sequence of rules
picked from pattern matcher is arranged in agenda so that execution engine can ex-
ecute the rules or other actions in order. The underlying idea of a rule engine is to
externalize the business or application logic. Business rules are expressions that de-
scribe and control the processes, operations and behaviors of how an enterprise, and
the applications that support it, performs. Rules assert influence over business or sys-
tem behavior by recommending actions to be undertaken. A rule provides its invoker
a directive on how to proceed. Further, business rule policies provide a generalized
mechanism for specifying frequently changing practices, freeing system components
from the burden of maintaining and evaluating evolving business and system envi-
ronments [18].

 On-Demand Business Rule Management Framework for SaaS Application 139

Agenda

Pattern
Matcher
(RETE)

Facts

Working

Memory

Knowledge

Base

Action

Facts Rules

Rule Engine

Fig. 1. The architecture of rule engine

3.2 Decision Table

Decision table is a tabular representation used to describe and analyze decision situa-
tions, where the states of a number of conditions determine the execution of a set of
actions. Many variations of the decision table concept exist which look similar at first
sight [8]. Decision tables are best suited for representing business rules that have mul-
tiple conditions. Adding one condition is done by simply adding one row or column.
Similar to if/then rule set, the decision table is driven by the interaction of conditions
and actions. The main difference is that in a decision table, the action is decided by
more than one condition, and more than one action can be associated with each set of
conditions. If the conditions are met, then the corresponding action or actions are
performed [19]. A column in the entry portion of the table is known as a rule. Values
in the condition entry columns are known as inputs and values inside the action entry
portions are known as outputs. Outputs are calculated depending on the inputs and
specification of the program. Fig. 2 depicts the basic principle of the decision table. It
uses available information on frequency of outcome of the various cases and whether
core minimization or run time minimization is the more important. A further devel-
opment in programming languages will be to hand this information along with the
decision table to a compiler which will then be responsible for this. Thus decision
tables not only offer a clearer way of stating the logic of a program but also provide
the notational means of extending the scope of automatic programming [23].

4 Rule Engine Based Framework for SaaS Application

The SaaS application is one packaged business application with Web-based user inter-
face for multiple tenants operating on the SaaS platform. With the increase in com-
plexity of SaaS application, business rules have become harder to express hence
require additional simple and friendly way to represent. Based on the features of busi-
ness rule engine, we design and implement a framework for development of SaaS
application with an online business rule customization. The direct customization of

140 X. Zhang et al.

Decision rules

for the case
(Decision Logic)

Some case

requiring a

decision

(Inputs)

Making Decision

Outcome

for the case

Potential

outputs

Fig. 2. The basic principle of decision table

Visual Rule Definer
(like Guvnor)

Rule Converter
（DSL File）

SaaS Application

SaaS Operation Platform

PaaS Business Logic Layer

IaaS

Tenant A Tenant B Tenant C Platform AdminRule
 EditorA EditorB

Rule File Set

Rule Engine

Rule Metadata

Rule Repository

Deploys
Spcifies

Fig. 3. The business rule engine-based framework

business rules by tenants is one of our objectives since it relieves, in many cases, the
SaaS providers from doing such heavy customization tasks each time when a new
tenant subscribe to the application [21]. The architecture of the proposed framework
is shown in Fig. 3. The essence of this framework is to separate business rules from
application, and make the business rules management as an independent and main-
tainable part, to support multi-tenancy. The objective of this framework is to reach a
flexible and competitive scenario in which it would be easier and faster to react when
demand or business changes.

4.1 Basic Units of the Framework

The biggest challenge of business rules management is tracking them down, and or-
ganizing a more effective management approach. In each case there is need for busi-
ness rules management. Business rules management comprises the definition, storage,
and application of the many rules used in business operations to provide organizations
with greater automation, more responsiveness to change and less expensive
distribution and maintenance of their business guidelines [5]. Rules management of-
fers a solution to meet the requirements of changing business rules. The proposed
framework includes the following major interrelated parts: BR definer, BR Converter,
BR engine, BR repository, SaaS application and SaaS deployment system.

 On-Demand Business Rule Management Framework for SaaS Application 141

─ The Rule editors can configure various business rules in terms of workflow, activ-
ity type, and business policy by using the Rule Definer tool, Tenant’s business rule
configured information is stored separately in tenant-specific metadata repository.
Rule engine-based framework generates polymorphic service for individual tenant
using tenant-specific metadata at runtime. Through the polymorphic service, tenant
users feel as if they are using their own business application while service instance
is shared by every tenant.

─ BR definer acts as a Web-based tool or sub-system that helps visually manage and
create new business rules, where the business policy can be changed online by te-
nant manager, business analysts, and software developers.

─ BR Converter is an essential auxiliary tool of rule engine and responsible for con-
vert the visualized rule from definer to BR engine understandable language. It also
can translate the decision table to a specific executable language.

─ BR engine is a central component which is responsible for computation and evalu-
ation of the business rules according to the user's invocation and request. It can au-
tomatically assert the business rules for specific tenant according to the rule load
metadata from repository.

─ BR repository is a repository that stores the rule-related information and supports
the flexibility of rule expression. A rule repository is a central place where manag-
ers, analysts, and software developers can define, share, and maintain the business
rules of a company. This component contains two major parts: rule set and rule
metadata. The former is used to store the information of business rules including
decision table, “When...Then” based rule file, and DSL (Domain Specific Lan-
guage) file and so on. The stored business rules in the repository are determined
based on the target system’s specifications. While the latter mainly includes the te-
nant customization and configuration information for specific tenants. Metadata is
stored in the repository as management information to support multi-tenancy.

─ SaaS application includes basic functionalities and business logic layer. We have
separated the business policy out of code and take it as an independent part for up-
grading and modification.

─ SaaS deployment system includes SaaS operation platform (Platform as a service)
and IaaS (Infrastructure as a Service). In SaaS operation platform, administrator
will be responsible for management and deployment of SaaS application. IaaS as a
basic part for SaaS deployment including hardware and storage part and so on. We
will not explain more details about the SaaS deployment system because this paper
focus on the relationship between Business Rule Management (BRM) and SaaS
application.

4.2 Capability of the Framework

SaaS application based on this framework will be supported with the following capa-
bilities, which also are the basic features of SaaS application.

─ Support of Business Rules Management. Enterprises run their businesses
with repeatable business processes driven by general business rules for specific

142 X. Zhang et al.

situations and customers. These capabilities allow enterprises to execute business
functionality using independent rule services made up of executable, declarative
rules, rather than being forced to integrate the logic as code into a system.

─ Support of Online Maintenance. Current enterprise applications require a new
application maintenance paradigm that can deliver faster, easier application mod-
ification. Business rule changes are first identified by the users of the system. The
fastest and safest way to empower these users is to give them the tools they need to
make the application changes themselves. This can be achieved by giving them
access to easy-to-use rule maintenance that allows them to maintain the policies,
procedures and rules for which they are responsible.

─ Support of Multi-tenancy Customization. As the number of tenants with sub-
scribed SaaS application grows, specific personalized business rules are needed for
most tenants. In this framework, we bind each Tenant ID with the corresponding
rule files and store the metadata in repository. In order to support multi-tenancy,
the most important part is the safety of specific rules with specific tenants. In this
framework, the metadata of rules are used to resolve this problem.

4.3 Lifecycle of Business Rules in SaaS

In business world, some rule policies are changed periodic and others are altered dis-
orderly depending on market competition and development. A good rules manage-
ment system allows the business logic of a system to be specified external to the
system itself. Rules can be changed directly by rule maintainers and editors. Many
rules management system provide the whole lifecycle management from designing
rules, deleting rules to editing and deployment of rules. The business rule lifecycle of
SaaS including rules creation, edition, activation, deletion, etc, is illustrated in Fig. 4

─ Rules Creation. The creation of business rules is done by rule editors. A new rule
is available for editing and deleting. Only approved new rules can be deployed.

─ Rules Edition. Rule edition is the modification of the condition part or the action
part of a rule. To keep track of rule changes, only new or deployed rules can be
edited. Deactivated rules must be reactivated before they can be modified.

─ Rules Deactivation and Reactivation. A rule can be manually or automatically
deactivated. For example, a rule is automatically deactivated on 1 January 2011, if
its time is constrained to function between 01 January 2008 and 31 December
2010. An editor may manually deactivate a rule especially when the regulatory or
policy changes. Rule editor may also reactivate a manually deactivated rule as they
needed.

─ Rules Deletion. Rules that are no longer in use in the system can be removed from
the system by deletion. New rules and annotated unused rules can also be deleted.
Rules Deployment. Rules are deployed into the repository will be reacted
immediately by making a snapshot of isolation for the deployed rules in SaaS
application. The deployment process of business rules includes at least the
following steps [22]: (1) extract the rules in scope for the execution; (2) package
the rule elements into a ruleset –a deployable artifact; (3) deploy the ruleset to the

 On-Demand Business Rule Management Framework for SaaS Application 143

target environment; (4) notify the engine of a new ruleset; (5) let management
stack inside the rule execution environment loading the ruleset; (6) trigger the en-
gine API to parse the ruleset; and (7) send business transactions to fire the rules.

Fig. 4. Lifecycle of business rules in SaaS application (based on [5])

5 Case Study

5.1 Motivation

In order to evaluate the proposed framework, we will illustrate a business rule online
customization process via an example. We take Attendance Management System
(AMS) as the domain we do experiment. AMS is an easy way to keep track of atten-
dance for enterprises, school activities, church groups, and community organizations.
It has become as the necessity application for workforce performance monitoring and
evaluation. The objective of this case is to develop a multi-tenancy supported AMS
application with online customization. In order to show variation of business rule for
specific tenant, we demonstrate a roadmap of rule policy from elicitation, presentation
to implementation by the process of absence approval for sickness in AMS. The
Process of Absence Approval enables employees to enter absence requests in the
system. The request passes through an approval procedure in which the request is
checked by employee’s superiors to see if the employee’s absence can be approved
according to company rules. In most enterprises, the approval process for employee

144 X. Zhang et al.

Absence Approval

Application

Team Leader
Approval

HR Director
Approval

Deputy-CEO
Approval

CEO
Approval

Start absence approval
application

To the end

To: higher level
approval

To: higher level

approval

To: highest level

approval

Decision making by rule policy

Level-1 Level-2 Level-3 Level-4

Fig. 5. Absence approval process of tenant C

who applies for the absence of sickness, personal reason or salary holiday has differ-
ent rules. Here we take a simplified absence of sickness approval process in AMS as a
case to show the variation of rules for different tenants. The approval process of ab-
sence policy for sickness depends on the absence days and other conditions such as
total absence days in month, total absence days in year, duration time and so on.

A simplified approval process depending only on condition of absence days is de-
picted on Fig.5. The whole approval process divides into four situations, if the ab-
sence days not exceed the Level-1’s limit. Only Level-1 approval is needed. If the
absence days over Level-1 and locate in the Level-2’s scope, the approval process
will need both Level-1 and Level-2. Normally Level-2’s approval will executed after
Level-1 approval passed except for emergency situation. Level-3 and Level-4’s ap-
proval have the similar approval procedure. The following italic description outline
the different approval process and rule policies of three tenants A, B, C respectively.

─ Tenant A: Absence days for sickness less than or equal one day will be approved
by team leader (Level-1). From one day to five days absence will be needed both
team leader and Human Resource Department approval (Level-2). And more than
five days will be permitted by Manager (Level-3).

─ Tenant B: Absence days for sickness less than or equal two days will be approved
by team leader (Level-1). And more than two days will approve by Human Re-
source Department (Level-2).

─ Tenant C: Absence for sick leave less than or equal one day will be approved by
team leader (Level-1). From one day to five days absence will be needed both team
leader and Human Resource Department approval (Level-2). From five days to ten
days absence will be approved by team leader, Human Resource Department and
deputy-CEO approval (Level-3). And more than ten days need to be permitted by
team leader, HR director, deputy CEO and CEO (Level-4).

 On-Demand Business Rule Management Framework for SaaS Application 145

5.2 Representation of Business Rule

Different enterprises have their own rule policies for absence approval as mentioned
above. Here we take Tenant C’s rules as a case to demonstrate how to fill these rules
into a decision table. The concrete steps are described as follows.

─ Step1, Definition of the Terms

Here we draw up a list of all condition statements and actions that are mentioned
above. It is clear that this example only uses absence days as the condition to deter-
mine which level of approval will be executed. The following table lists all related
occurrences of these terms in the above context.

Table 1. Rule condition statement and action statement

Condition Statement Action Statement

Absence Days Permission level

Absence Days <=1 Team leader (L-1)

1<Absence Days<=5 HR Director(L-2)
5<Absence Days<=10 Deputy CEO(L-3)

Absence Days >10 CEO(L-4)

─ Step 2, Verification of the Decision Rules

Based on the text of the regulations and conditions, the condition states and the ac-
tions, now we can proceed by defining the rules, analyzing each line in the regulation
and translating it into a rule. Absence approval rule of Tenant C is also taken as an
example.

• Absence days for sickness less than or equal one day will be approved by team
leader.

Rule 1: Absence Days <=1

Action: Level-1 Approved (team leader)

• From one day to five days absence will need both team leader and Human Re-
source Director approval.

Rule 2: 1< Absence Days <=5

Action: Level-1(team leader) and Level-2 (Human Resource Director) approval.

• From three days to ten days absence will be approved by team leader, Human Re-
source Department and deputy-CEO approval.

Rule 3: 5< Absence Days <=10

146 X. Zhang et al.

Action: Level-1, Level-2 and Level-3(deputy-CEO) approval.

• And more than 10 days will be permitted by team leader, HR Director, deputy-
CEO and CEO.

Rule 4: Absence Days >=10

Action: Level-1, Level-2, Level-3 and Level-4(CEO) approval.

─ Step 3, Filling of the Decision Table

After specifying the decision rules, it needs to fill them into the appropriate combina-
tions in the decision table as shown in Table 2. The key point to keep in mind is that
in a decision table, each row is a rule, and each column in that row is either a condi-
tion or action for that rule. “※” indicates actions in the combination will be activated,
and “○” means no action will be activated by rules.

Table 2. Decision table for absence approval rule

Absence Days (ADs) <=1 1<Ads<=5 5<Ads<=10 >10

Team Leader Approval ※ ※ ※ ※

HR Director Approval ○ ※ ※ ※

Deputy-CEO Approval ○ ○ ※ ※

CEO Approval ○ ○ ○ ※

─ Step4, Optimization of the Rule Condition

Once a complete validation of the decision table is finished, the table could be re-
duced to its minimal format. The order of the conditions might influence the number
of columns in the contracted table. For this case, the above condition is already the
optimal one.

5.3 Implementation

In this case, we take Eclipse IDE as the development environment and java-supported
rule engine Drools 52 as business rule engine. Drools introduce the business logic
integration platform that provides a unified and integrated platform for Rule,
Workflow, and Event Processing. Drools 5 is now split into four main subprojects
[17]: (1) Guvnor (BRMS), a centralized repository for Drools; (2) Expert (rule en-
gine); (3) flow (process/workflow), providing workflow or process capabilities to the
Drools platform; (4) fusion (event processing/temporal reasoning), providing event
processing capabilities. Drools expert is used as a rule engine and Guvnor as a visual
business rule definer which allow browsing and editing the rule set. Generally,

2 http://www.jboss.org/drools/

 On-Demand Business Rule Management Framework for SaaS Application 147

decision table is a useful way to represent conditional logic in a compact format. This
format is also readily readable and editable by non technical users and will be suitable
for most employees to understand. Spreadsheets may not be perfect, but popular and
well-understood. So we can use them to hold the data that we supply to the business
rules. Then use spreadsheets to hold the actual rules in a decision table format. Drools
decision tables can utilize a spreadsheet (such as Excel, CSV) as the means to capture
decision logic in a user friendly way. Because of the convenience of decision table
and supportability of Drools, the decision table is adopted as business rule representa-
tion style in our application.

Fig.6 is the snapshot of the executable Drools decision table for absence approval
process of Tenant C. We can update business rule in a simple spreadsheet and deploy
them with a few clicks. In this decision table, the first three rows are the head infor-
mation includes RuleSet, Import and Notes. RuleSet lets Drools know where the
header table begins. Import lets Drools know which package these rules live in and
other imported additional JavaBeans. Notes is the comment information and ignored
as it means nothing to Drools. The following part is the main body of decision table.
The left part of the decision table is the “CONDITION” cells, which makes up the
“WHEN” part of the rule. The right part of the decision table is “ACTION” cells
which give the “THEN” part of the rules. In Drools, the “WHEN” part of the rules
define the preconditions. The “THEN” part defines conclusions, decision, actions, or
just a new fact deduced from the knowledge base. The < preconditions > is also re-
ferred to as the left-hand side (LHS) of the rule, whereas the < conclusions > is
referred to as the right-hand side (RHS). So, we can also express rules as follows:

 LHS (< rule name >) = < preconditions >

 RHS (< rule name >) = < conclusions >

The first row of decision table could be rendered like the following Drool rules lan-
guage:

rule "absence approval"
when
em(absence_days>0&&absence_days<1);
then
Tenant.sentToApproval (Level 1);
update (em);
end

In order to support the online customization of business rule, it is necessary to use
visual rule definer. Guvnor Editor is a user-friendly web editor which is powerful
enough to modify rules. Tenants can fill in the rule name and rule description, set the
priority of this rule and choose templates to define business rule in line with their
requirements. The modification of decision table will need to download the decision
table and modify it, then upload it with Guvnor. Otherwise, in order to keep the isola-
tion of business rules for different tenant, we build the tenant-based security policy on
the login page with different password for different tenant to prevent the violation of
the rules modification. The visual rule definer of Gnuvor is shown in Fig.7.

148 X. Zhang et al.

Fig. 6. Snapshot of Drools based on decision table

Fig. 7. Snapshot of decision table creation in Gnuvor

5.4 Prototype Application

The SaaS application of AMS prototype is developed following the proposed frame-
work which has successfully integrated business rule engine into SaaS application.
AMS is a SOA-based multi-tenant application. It allows tenant to manage their em-
ployee attendance and presence in a work setting to maximize the motivations and
minimize the loss. And AMS is one of SaaS applications in Cloud Service Supermar-
ket. Fig.8 shows a snapshot of the AMS prototype system, which is successfully dep-
loyed on the SaaS platform of Cloud Service Supermarket [20].

6 Conclusions

In this paper, we have overviewed BR engine based framework and separated three
main components used for such a SaaS application development. Depending on the
proposed framework, it may be possible to ensure different level of agility by an in-
stant deployment of changes in the business policy and immediate reaction to the
changes on the market or competition by changing existing business rules. These
advances allow SaaS application to be more transparent, flexible and cost reduction.

 On-Demand Business Rule Management Framework for SaaS Application 149

Fig. 8. Snapshots of SaaS application of AMS

Although BR engine based application has more complex development process in an
initial phase, but such a system is more efficient in further maintenance and modifica-
tions for numbers of tenants with frequently changing regulations and business policy.

Although the proposed approach is convenient and effective to modify the rule file
and manage the requirement changes by Rule Engine, it also brings lots of extra per-
formance consumptions. The consumptions mainly include the following parts: the
time of compiling rule files, the time of rule matching and the time of rule conflict
resolution and the time for management of rule metadata.

The work presented here, is still in its earlier stage. On the one hand,business rule
isolation for multi-tenant is not completely resolved by Guvnor. So there are more work
still needs to be done on visual definer for specific SaaS application. On the other hand,
performance evaluation work still need to be done in the future to make sure that the
multi-tenant request response time is in a reasonable and tolerable ranage.

Acknowledgements. This Research Project Was Supported by the National Natural
Science Foundation of China under Grant No. 60970017, No. 61202031, No. 61273216,
and No.61100018, National Science & Technology Pillar Program of China under Grant
No.2012BAH07B01, the Fundamental Research Funds for the Central Universities
under Grant No.201121102020004, the Central Grant Funded Cloud Computing Dem-
onstration Project of China Undertaken by Kingdee Software (China) Co., Ltd.

References

1. Kapuruge, M., Colman, A., Han, J.: Achieving multi-tenanted business processes in SaaS
applications. In: Bouguettaya, A., Hauswirth, M., Liu, L. (eds.) WISE 2011. LNCS,
vol. 6997, pp. 143–157. Springer, Heidelberg (2011)

2. Kwok, T., Nguyen, T.N., Lam, L.: Software as a Service with multi-tenancy support for an
electronic contract management application. In: 2008 IEEE International Conference on
Services Computing, pp. 179–186 (2008)

3. Wan-Kadir, W.M.N., Pericles, L.: Relating evolving business rules to software design.
Journal of Systems Architecture (50), 367–382 (2003)

150 X. Zhang et al.

4. Liu, C., Dong, X.P., Yang, Z.Q.: Research of modern enterprise intelligent system based
on rule engine and workflow. In: 2010 Intelligent Computing and Intelligent Systems
(ICIS), pp. 594–597 (2010)

5. Gichahi, H.K.: Rule-based process support for enterprise information portal (2003),
http://www.sts.tu-harburg.de/pw-and-m-theses/2003/gich03.pdf

6. Orriëns, B., Yang, J., Papazoglou, M.P.: A framework for business rule driven service
compostion. In: Benatallah, B., Shan, M.-C. (eds.) TES 2003. LNCS, vol. 2819, pp. 14–27.
Springer, Heidelberg (2003)

7. Vasilecas, O.: The framework for the implementation of business rules in ERP. Informaci-
jos Mokslai (49), 146–157 (2009)

8. Vanthienen, J.: Ruling the business: about business rules and decision tables (2009),
http://www.econ.kuleuven.be/tew/academic/infosys/members/vth
ienen/download/papers/br_dt.pdf

9. Forgy, C.: Rete: A Fast Algorithm for the many pattern/many object pattern match prob-
lem. Artificial Intelligence (19), 17–37 (1982)

10. Karami, N., Iijima, J.: A logical approach for implementing dynamic business rules. Con-
temporary Management Research 6(1), 29–52 (2010)

11. Guo, C.J., Sun, W., Huang, Y., et al.: A framework for native multi-tenancy application
development and Management. In: The 9th IEEE International Conference on E-
Commerce Technology and The 4th IEEE International Conference on Enterprise Compu-
ting, E-Commerce and E-Services, pp. 551–558 (2007)

12. Zhang K., Zhang X., Sun W., et al. A policy-driven approach for software-as-services cus-
tomization. The 9th IEEE International Conference on E-Commerce Technology and The
4th IEEE International Conference on Enterprise Computing, E-Commerce and E-
Services, pp.123-130 (2007)

13. Gong, Y.W., Janssen, M., Overbeek, S., et al.: Enabling flexible processes by ECA orches-
tration architecture. In: ICEGOV 2009 Proceedings of the 3rd International Conference on
Theory and Practice of Electronic Governance, pp. 19–26 (2009)

14. Nitu.: Configurability in SaaS (software as a service) applications. In: Proceedings of the
2nd India Software Engineering Conference ISEC 2009, pp. 19–26 (2009)

15. Sun, W., Zhang, X., Guo, C.J., et al.: Software as a Service: Configuration and Customiza-
tion Perspectives. In: IEEE Congress on Services, SERVICES 2008, pp. 18–25 (2008)

16. Shi, Y.L., Luan, S., Li, Q.Z., et al.: A flexible business process customization framework
for SaaS. In: WASE International Conference on Information Engineering, ICIE 2009, pp.
350–353 (2009)

17. Browne, P.: JBoss Drools business rules. Packet publishing. Birmingham-Mumbai (2009)
18. Jeng, J.J., Flaxer, D., Kapoor, S.: RuleBAM: A rule-based framework for business activity Man-

agement. In: 2004 IEEE International Conference on Services Computing, pp. 262–270 (2004)
19. Vasilecas, O., Smaizys, A.: Business rule based data analysis for decision support and au-

tomation. In: International Conference on Computer Systems and Technologies, Comp-
SysTech 2006, pp. 191–196 (2006)

20. Zhang, X.W., He, K.Q., et al.: SaaS service super-market building model and service rec-
ommendation approach. Journal on Communication 32(9A), 158–165 (2011) (in Chinese)

21. Ghaddar, A., Tamzalit, D., Assaf, A., Bitar, A.: Variability as a service: outsourcing variabili-
ty management in multi-tenant SaaS spplications. In: Ralyté, J., Franch, X., Brinkkemper, S.,
Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 175–189. Springer, Heidelberg (2012)

22. Boyer, J., Mili, H.: Agile business rule development. Springer, Heidelberg (2011)
23. King, P.J.H.: Decision tables, pp. 135–142 (1967),

http://comjnl.oxfordjournals.org/content/10/2/135.full.pdf+html

Making XML Signatures Immune
to XML Signature Wrapping Attacks

Christian Mainka1, Meiko Jensen2, Luigi Lo Iacono3, and Jörg Schwenk1

1 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
2 Independent Centre for Privacy Protection (ULD), Kiel, Germany

3 Institute of Media and Imaging Technology,
Cologne University of Applied Sciences, Germany

{Christian.Mainka,Meiko.Jensen,Joerg.Schwenk}@rub.de,
luigi.lo iacono@fh-koeln.de

Abstract. The increased usage of XML in distributed systems and platforms in-
creases the demand for robust and effective security mechanisms likewise. Recent
research work discovered, however, substantial vulnerabilities in the XML Sig-
nature standard as well as in the vast majority of the available implementations.
Amongst them, the so-called XML Signature Wrapping (XSW) attack belongs
to the most relevant ones. With the many possible instances of the XSW attack
class, it is feasible to annul security systems relying on XML Signature and to
gain access to protected resources as has been successfully demonstrated lately
for various Cloud services.

This work introduces a comprehensive approach to robust and effective XML
Signatures for SOAP-based Web Services denoted as XSpRES. An architecture
is presented, which integrates the required enhancements to ensure a fail-safe and
sound signature generation and verification. Following this architecture, a hard-
ened XML Signature library has been implemented. The obtained evaluation re-
sults show that the developed concept and library provide the targeted robustness
against all kinds of known XSW attacks. Moreover, the empirical results under-
line that these security merits are obtained at low efficiency and performance
costs as well as remain compliant with the underlying standards.

Keywords: XML Signature, XML Signature Wrapping, Web Services, SOAP,
WS-Security, XSpRES, SOA, Cloud.

1 Motivation and Introduction

XML is a dominant standard for encoding documents or messages. The range of XML
applications is broad. It can be roughly divided into file formats for data at rest such as
Docbook, Open Office and WordML for documents or SVG for images and messages
for data in transit such as SOAP, XML-RPC or ebXML. The ability of being platform-
independent made XML a driving force especially in terms of systems integration. Here
resides one important reason why XML is widely used in distributed system and plat-
form contexts such as SOA and Cloud.

With the increased adoption of SOA and Cloud in sensitive application domains,
the demands for security increase as well. The use of message-oriented security for

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 151–167, 2013.
c© Springer International Publishing Switzerland 2013

152 C. Mainka et al.

business information based on standards such as Universal Business Language (UBL,
http://ubl.xml.org/), eXtensible Business Reporting Language (XBRL, http://
www.xbrl.org/) and Bank Internet Payment System (BIPS, http://www.bits.org/) is one
example. Others can be found in the e-government domain where in Europe, e.g., the
digital agenda explicitly includes SOA concepts as one building block for establishing
ICT for public services. Based on pan-European interoperable e-signatures and e-IDs,
SOA is recognized as the enabler for cross-border interoperability of e-government sys-
tems [1]. Many pilots build upon these foundations such as the e-PRIOR platform for
e-procurement, which key design principles include standardized XML documents and
SOAP Web Services (http://www.osor.eu/projects/openeprior).

XML Encryption [2] and XML Signature [3] are the core security standards to pro-
tect XML data. Recent research results show, however, that these upmost important se-
curity mechanisms include serious flaws. Amongst them, the so-called XML Signature
Wrapping (XSW) attack is the most relevant one. As described in detail in Section 2,
this attack bypasses security means based on digital signatures. Thus, from the XSW
attack arises a serious security threat which is of practical relevance especially in sce-
narios as the ones depicted above. The impact of XSW can be seen in [4] where 11 out
of 14 SAML frameworks are detected to vulnarable to this attack. Therefore, the XSW
attack needs to be carefully considered and treated in these environments.

The proposed countermeasures—if effective at all—usually provide protection only
in very specific settings. No comprehensive approach is available yet. This paper
contributes such a holistic and integrated approach—named XML Spoofing Resistant
Electronic Signature (XSpRES)—by providing an architecture and an open-source im-
plementation of an XML Signature library that enables the standard-compliant, robust
and effective protection of XML data.

Although the emphasize of the developments has been on protecting SOAP-based
Web Services and the paper will remain focused on this, still the general protection
strategies can be applied to other XML messages or documents to form equivalent
solutions.

2 Foundations and Related Work

To lay the foundations for this work, the basics behind XML Signature Wrapping
(XSW) attacks are described in the following accomplished with an analysis of the
related work in terms of available countermeasures.

2.1 XML Signature

XML Signature [3] is the standard protection means for XML data. It specifies how
to digitally sign XML fragments for ensuring integrity and proofing authenticity. The
XML Signature element has the following (slightly simplified) structure:

<S i g n a t u r e >
<S i g n e d I n f o>

<C a n o n i c a l i z a t i o n M e t h o d Algor i thm = ” . . . ” / >
<Signa tu reM etho d Algor i thm = ” . . . ” / >
<R e f e r e n c e URI = ” . . . ” >

Making XML Signatures Immune to XML Signature Wrapping Attacks 153

<Diges tM e thod Algor i thm =” . . . ” >
<Diges tVa lue > . . .< / D iges tVa lue>

</ Re fe rence>
</ S i g n e d I n f o>
<S i g n a t u r e V a l u e > . . .< / S i g n a t u r e V a l u e>

</ S i g n a t u r e >

The signing process undertakes the following flow: for each document part to be
signed, a Reference element is created and the corresponding part is canonical-
ized and hashed. The resulting digest is added into the DigestValue element and
a reference to the signed message part is inserted into the URI attribute. Finally the
SignedInfo element is canonicalized and signed. The result of the signing operation
is placed in the SignatureValue element.

2.2 XML Signature Wrapping Attack

The so-called XML Signature Wrapping (XSW) attack introduced in 2005 by McIntosh
and Austel [5] illustrates that the naive use of XML Signature may result in signed XML
documents remaining vulnerable to undetectable modifications. Thus, with the typical
usage of XML Signature an adversary may be able to alter valid documents in order to
gain unauthorized access to protected resources.

In general, the attack injects unauthorized data into a signed XML document
alongside with a possible reconstruction of that document so that the integrity and au-
thenticity is still verified but untruly verified. The consequence is that the undetected
modifications are treated as authorized input during any further processing steps.

To illustrate this attack, let’s assume that an attacker intercepts an XML-based SOAP
message. The slightly simplified structure and content of the obtained SOAP message
is shown in Figure 1. The message addresses a Web Service interface for a particular
Cloud service, that allows controlling the Cloud resources via such a SOAP-based API.
In this example, the intercepted message has been issued by the legitimate user in or-
der to get an overview of the available virtual machine images. The attacker needs to
transform the operation in the SOAP body in order to reach the attack goals.

One possible result of a modified SOAP message based on XSW is shown in Fig-
ure 2. The original SOAP body element is moved to a newly added bogus wrapper
element in the SOAP security header. Note that the moved body is still referenced by
the signature using its identifier attribute Id="body". The signature is still cryp-
tographically valid, as the body element in question has not been modified (but simply
relocated). Subsequently, in order to make the modified message again compliant to the
XML Schema of SOAP messages, the attacker changes the identifier of the cogently
placed SOAP body (in this example the Id="attack" is used). In this newly added
and still empty SOAP body the attacker can now enter any of the operations defined
by Cloud control API. In the given example, the adversary initiates a key generation
process on behalf of the legitimate user being attacked.

2.3 Related Countermeasures

Since the discovery of XSW attacks by McIntosh and Austel, several countermeasures
against them have been proposed and intensively discussed in the last years. In fact,

154 C. Mainka et al.

Fig. 1. Signed SOAP Message

Fig. 2. XML Signature Wrapped SOAP Message

McIntosh and Austel themselves discussed in their original paper on XSW attacks what
requirements a server-side security policy must contain in order to uncover the attack.
The final policy included assertions such as:

– a signature must be present in the security header
– the element specified by /soap:Envelope/ soap:Body must be referenced

from the signature
– the element matching /soap:Envelope/soap:Header/
wsse:Security/wsu:Timestampmust be referenced from the signature

– the signature verification key must be provided by an X.509 certificate issued by a
trusted CA

In 2009 Gruschka and Lo Iacono showed with the first practical XSW attack that the
proposed checks by McIntosh and Austel are not sufficient to effectively detect XSW
attacks[6].

Bhargavan, Fournet and Gordon also used security policies for fending XSW at-
tacks. They developed a formal model for policy verification [7] and derived from these
results a policy adviser [8] for testing and generating security policies. They use an
abstract policy language for proofing security properties and map between this propri-
etary language and WS-SecurityPolicy [9]. The policy adviser proposes the following
security assertions:

Making XML Signatures Immune to XML Signature Wrapping Attacks 155

– Mandatory elements: wsa:To, wsa:Action, soap:Body
– Signed elements: all mandatory, wsa:MessageID,
wsu:Timestamp

– Recommended: use of X.509 certificates for authentication

The security requirements for an incoming message to the Amazon EC2 (http://
aws.amazon.com/ec2) service are not stated as a formal security policy but in a human
readable form. These requirements are:

– Mandatory elements: wsu:Timestamp, soap:Body,
wsse:BinarySecurityToken containing X.509 certificate

– Signed elements: wsu:Timestamp, soap:Body

One can see that the Amazon security policy fulfills the requirement from Bhargavan
et al. except for the WS-Addressing[10] requirement, which have no influence on this
attack (as AWS does not honor WS-Addressing headers). But despite the fact that these
requirements were formally proven, obviously such a pure policy-driven approach is
not sufficient for mitigating XSW attacks. The gap between the formal policy require-
ment and a real-world policy checking application can still be misused for attacks. A
further problem with the policy adviser approach is that strong restrictions to the se-
curity policy are made. For example a lot of elements are claimed as mandatory and
the signature of the body is absolutely required which reduces the flexibility of SOAP
security mechanisms. However, this is supposably not a restriction for most practical
applications.

Most XSW attacks modify the structure of the original message from the legitimate
sender in some way. In the example attack described in Section 2.2 a second SOAP
body is inserted by the attacker while the original one is being relocated into the SOAP
header. Therefore, Rahaman, Schaad and Rits introduced a method – called inline ap-
proach – to protect some key properties of the SOAP message structure [11]. In this
system some characteristic information are collected over the SOAP message and in-
serted into a new element called SOAP Account. This element is added to the SOAP
header and additionally signed by the sender. The protected properties are:

– Number of child elements of soap:Envelope
– Number of child elements of soap:Header
– Number of references in each signature
– Successor and predecessor of each signed object

If an attacker changes the structure of the message in a way that one of these prop-
erties are modified the attack can be uncovered. This is for example true for the ex-
ample attack given in Section 2.2. The number of child elements of the SOAP header
is changed from one to two. Thus the usage of the inline approach would have de-
tected this attack. Nonetheless, this protection method has some disadvantages. First,
the introduced SOAP Account element as well as the verification of this element is not
standardized. Thus, it can for example not be claimed by a WS-SecurityPolicy [12].
Second and more importantly, this method does not generally protect from XSW at-
tacks. If an attacker is able to modify the message structure while keeping the structure

156 C. Mainka et al.

properties the inline approach can be circumvented as has been shown by Gajek, Liao
and Schwenk in [13]. They improve the above discussed inline approach, but for this
improved version the just mentioned disadvantages – especially the standardization is-
sue – still remain.

The authors of [13] give in their paper some more solution ideas for fending XSW
attacks. The main idea is using the verification component as a filter. In contrast to
common methods where the signature verification just returns a boolean value, here
the result of the transformation and canonicalization step is returned. This ensures that
the following processing entities inside the Web Service framework operate truly on
the message that was originally signed. One problem of this approach – as already
remarked by the authors – is that the Web Service cannot operate on the SOAP envelope
as a single well-formed message document but only on parts of the message which may
also be divided into a forest of message trees. This problem can be solved by passing the
signed elements together with its parent nodes as a spanning DOM tree to the business
logic part of the Web Service. This works only, if the signature transformation does not
change the content of the elements. But even this improved version is inadequate if the
Web Service operates on signed as well as on unsigned parts of the SOAP message. In
this case the signature component cannot operate as a filter.

Until 2009 this research work was mainly treated as theoretical, due to the rare usage
of WS-Security in sensitive applications and the absence of a real-life XSW attack. In
2009 it was discovered, that Amazon’s Cloud services were vulnerable to XSW attacks
[6]. Using a variation of the attack example presented in Section 2.2 an attacker was able
to perform arbitrary operations in the Cloud on behalf of a legitimate user. A number of
related results have been published in the following, leading to the discovery of novel
attack instances [14].

Along with these developments, novel defense techniques have been proposed. In [15]
the authors turn toward a major characteristic of the XSW attack, which is the missing
confidence of location information when using ID-based references to link the XML Sig-
nature metadata to its signed content. Since the ID attribute does not provide any details
on the signed content’s location in the document (and sometimes not even on its property
of uniqueness), the default referencing scheme possess major challenges with respect to
XSW attacks. Hence, the use of a location-aware referencing scheme is favorable. With
XML Signature, this can be achieved using XPath expressions for referencing. For in-
stance, an XPath of /soap:Envelope/soap:Header/wsse:Security/wsu:Timestamp leaves
little doubt on which part of the XML document is intended to be protected by a digital
signature. Furthermore, an attacker can only trick this reference in a XSW attack if he
manages to trick the XPath evaluation into mapping to another XML subtree than an-
ticipated – a way more challenging task as compared to moving an ID-equipped subtree
to an arbitrary location within the XML document tree as has been used in the above
example.

A critical issue with respect to XPath-based referencing is the robustness of the actual
XPath expression. For instance, an XPath expression of //*[@ID="foo"] is a valid
XPath expression, but is equivalent to an ID-based reference with respect to XSW at-
tempts. As analyzed in [15], the most favorable subset of XPath when it comes to XSW
robustness is the subset called FastXPath, which prohibits the use of several potentially

Making XML Signatures Immune to XML Signature Wrapping Attacks 157

vulnerable XPath properties. For instance, the use of so-called wildcard axes such as
descendant:: are prohibited, since they allow an attacker to move the referenced
XML fragment arbitrarily within the range of that XPath location step. Analogously, the
use of position indicator predicates is mandatory in FastXPath. An XPath of /soap:
Envelope[1]/soap:Body[1] clearly selects exactly one – the first – child ele-
ment of matching name, thereby fending XSW attacks that use element duplication (as
e.g. used against Amazon EC2 in [6]).

In [16] the authors introduce and evaluate the possibility of hardening the XML
Schema in conjunction with XML Schema validation to construct an effective protec-
tion against XSW attacks. The authors identified the following weak definitions in the
SOAP Schema:

– Element: xs:any allows an element to have any kind of child elements, which are
not defined by any schema. The main idea of this is to have an extensible layout,
e.g. the SOAP Header can have any not yet defined child elements (reserved for
future use).

– Attribute: processContents="lax" instructs the validator to only process
the content if an XML Schema for it is present, otherwise just leave it out. A more
drastically direction is processContents="skip" which causes simply no
validation.

– Attribute: namespace="##any" and namespace="##other" allows the
usage of elements from any, respectively from any but its parents namespace.

Each of these nodes allows an attacker to inject own elements, e.g. to place a XSW
element. To eliminate this leakage, each instruction is removed from the hardened
Schema by substituting it directly with the needed Schema parts (e.g. WS-Security).
This constricts the whole document to deny any user-defined elements. It has been
shown that XML Schema validation with a hardened XML Schema is capable of fend-
ing XSW attacks, but bears some pitfalls and disadvantages amongst which the in-
creased resource consumption is the biggest obstacle.

This analysis of the related work can be concluded by noting the fact, that the XSW
attack has been moved from a hypothetical to a practical security threat which needs
to be urgently targeted and that there is no comprehensive approach available which
provides the required protection against this attack in a standard-compliant and effective
manner. This lack is targeted by XSpRES as will be introduced in the following.

3 The XSpRES Approach

As can be seen from the discussions on available countermeasures, several propos-
als for fending the XML Signature Wrapping attack threat exist. Unfortunately, each
countermeasure has shown to become ineffective at some point for certain XSW at-
tack variations. Hence, in order to establish a robust protection, it is necessary to com-
bine a suitable subset of these countermeasures to come up with a holistic, integrated
approach.

The long-term investigations showed that two main properties need to be preserved
for signed XML data to effectively prevent XSW attacks from occurring. One is to

158 C. Mainka et al.

ensure that the document structure is strictly defined and does henceforth not allow
the altering of the structure by injection or reordering attempts. The other property is
related to the referencing scheme which must assure that the binding between the signed
parts of a document and the document structure can not be manipulated unnoticeable.
Furthermore, both properties need to be constructed and implemented with the required
care. As the state of the art described in Section 2.3 clearly shows is, that the simple
and naive adoption of e.g. schema validation for document structure approval or XPath-
based instead of ID-based referencing for an immutable binding is not sufficient for
obtaining a robust protection. This is also true for a combination of these mechanisms.

As a consequence, novel mechanisms have been developed to provide adequate so-
lutions to meet these properties. At the core of XSpRES is henceforth an enhanced
referencing scheme which immutably binds the signed elements of a document with
the document structure. Moreover, a scheme to strictly define the structure of a XML
document or message is incorporate, alongside with according verification components.
Both mechanisms are described in more detail in the following Sections 3.2 and 3.3.

Beside these crucial conceptual and technical aspects, the compliance with the rele-
vant standards has been a high priority focus point. By achieving standard-compliance
the acceptance of the developed solution can be increased, since it respects already
made investments and allows for a seamless integration and migration. Moreover, it
would still enable the use of the protection functions in heterogeneous environments in
which it could not be deployed on every endpoint, due to restrictions of legacy systems.
The architecture is therefore designed to deal with the XSW-introducing issues in the
specifications and implementations by pre-processing steps. Before a standard signa-
ture is generated or verified, the XSpRES components process the XML message to
ensure the discussed properties are met. The pre-processing components at the signa-
ture generation side will not make any assumption on signature verification capabilities,
henceforth maintaining the standard-compliance. By this, it is e.g. feasible for a stan-
dard XML signature library to verify XSpRES-enhanced signatures, with the obvious
drawback of a reduced protection level.

3.1 Architecture

An initial step for the development of a holistic defense architecture for Web Services
against XSW attacks consists in the definition of a formalized model for the attack
scenario. Based on the existing previous work presented in [15,17], and derived from
the semi-formal Web Services Attacker Model described in [18], the scenario model for
the XSW attack consists of three main entities: a Web Service client, a Web Service
server and an external attacker [19]. The attacker is assumed to be able to access and
alter XML messages exchanged between the Web Service client and the Web Service
server, but is not able to interfere with the client-side or server-side implementations of
the Web Services software stack directly.

Based on this abstract yet formal scenario model, the XSpRES approach derives the
ability to extend the Web Service stacks at both Web Service client and Web Service
server arbitrarily, as long as these extensions remain within the particular trusted domain

Making XML Signatures Immune to XML Signature Wrapping Attacks 159

WS
Client

… … XSpRES … WS
Service

…signed
SOAP

WS-Framework message processing chain WS-Framework message processing chain

XSpRES Integration into WS-Framework

XSpRES Integration via Gateway

signed
SOAP

XSpRES

SOAP WS
Client

XSpRES
Gateway

signed
SOAP

WS
Service

XSpRES
Gateway

Fig. 3. XSpRES Architecture

and outside of the scope of the attacker. Thus, the XSpRES architecture introduces two
new entities to the scenario: a client-side extension and a server-side extension (see
Figure 3).

The developed architecture as shown in Figure 3 mainly consists of these extension
which include the pre-processing components. There are two approaches available, in
which the extensions can be integrated at the client and server side respectively. The first
is a deep integration into the message processing chain of one particular Web Service
framework. This would enable to make use of the provided functionality directly within
the programming environment. The other approach provides the protection mechanisms
as a gateway solution, which steps into the communication link at the client and the
server side. Such a deployment decouples the functionality from a particular Web Ser-
vice environment and can henceforth be operated with clients and services programmed
in various distinct languages.

3.2 Client-Side Signature Generation Process

Though XSW attacks commonly only affect the Web Service server operations, there
nevertheless exists the need to also consider the Web Service client-side to improve the
overall robustness of the secured XML-based communication. The goal of the XSpRES
client-side processing is to bind the XML Signature in the course of signature creation
as uniquely and strongly as possible to its referring content. This is achieved by chaining
a set of separate modules, which seamlessly integrate into the client-side Web Service
processing flow (see Figure 4).

First, the WS-SecurityPolicy is verified to ensure the use of FastXPath expressions.
Afterwards, those expressions are transformed to their prefix-free equivalent to pre-
vent namespace injection attacks [17]. Finally, the document is signed using standard
mechanisms but building on the previous processing steps. All of these components are
described in more detail in the following sections.

Referencing Verification. As discussed in Section 2.3, when sticking to the FastXPath
subset defined in [15], the robustness of the resulting XML Signatures against XSW is

160 C. Mainka et al.

Referencing
Verification

Prefix
Transformation

Signature
Creation

SOAP signed
SOAP

XSpRES Signature Generation Enhancements

Fig. 4. XSpRES Signature Generation Process

improved significantly. XSpRES integrates FastXPath-based referencing on the client-
side for binding the XML Signature metadata more tightly to its signed contents.

The Referencing Verification module of the XSpRES client-side is not directly ac-
cessing the SOAP messages, but is merely used to preprocess the WS-SecurityPolicy
file that defines which parts of the bypassing SOAP messages have to be signed. Com-
monly, the WS-SecurityPolicy document is created and provided by the Web Service
server, describing its expectations with respect to signed parts in SOAP messages it
is targeted with. Hence, it acts as a basis for determining the parts-to-be-signed at the
client-side. However, if the XPath expressions given in the WS-SecurityPolicy file are
not following the FastXPath grammar as discussed above, their effectiveness in terms
of fending XSW attacks are reduced. Thus, this module’s task is to preprocess all XPath
expressions given in the server-provided WS-SecurityPolicy document, verifying that
all of the contained XPath expressions strictly stick to the FastXPath grammar. If the
WS-SecurityPolicy file fulfills this requirement, it is used in the FastXPath-based refer-
encing module introduced previously, simply by using the FastXPath expressions from
the WS-SecurityPolicy document as the reference in the XML Signatures created. Oth-
erwise, the module throws an error and stops the client gateway.

Prefix Transformation. As pointed out in [17], the use of XPath in conjunction with
XML namespaces has its issues, potentially leading to an exploitable XSW vulnerability
despite the existence of a strict XPath expression for referencing. By binding the same
namespace prefix to different namespace URIs at different locations within a signed
SOAP message document, the server-side processing stack can be misled into a XSW
attack, even when using a strict FastXPath expression.

The Prefix Transformation module transforms the FastXPath expressions from the
server-provided WS-SecurityPolicy into an equivalent, but prefix-free variant. The
FastXPath expression of /soap:Envelope[1] gets e.g. transformed into the seman-
tically equivalent XPath expression of /*[local-name()="Envelope" and
namespace-uri()="http://ns-soap"][1]. As can be seen, the problematic
use of the soap: prefix is resolved into an equivalent representation holding the full
namespace URI of the SOAP specification. Hence, binding the soap: prefix to another
namespace URI does no longer affect the result of the transformed XPath expression,
protecting against the XSW threat of namespace injection as described in [17]. In prin-
ciple, it would be a valid approach to use the transformed version of the FastXPath
expressions already within the WS-SecurityPolicy document itself. However, due to
limited readability and considerations in respect to available tools, the XSpRES pro-
totype sticks to the presented XPath transformation approach. This implies, that after
the successful FastXPath compliance verification of each XPath expression extracted

Making XML Signatures Immune to XML Signature Wrapping Attacks 161

DoS
Detection

XML Schema
Validation

Referencing
Verification

Prefix
Transformation

Signature
Verification

signed
SOAP

verified
SOAP

XSpRES Signature Verification Enhancements

Fig. 5. XSpRES Signature Verification Process

from the server-provided WS-SecurityPolicy, this expression is transformed into the
prefix-free notation, and then used directly within the created XML Signature as XPath
Filter2 referencing expression. Thereby, it can be guaranteed that a location change of
a signed XML subtree within a SOAP message automatically causes an invalidation
of the respective XML Signature. Even without a server-side defense mechanism, this
approach provides already an effective protection against numerous XSW attack varia-
tions. However, since the server-side application logic itself might not be implemented
in a way that recognizes and uses the same fixed position as input for its operations,
XSW attacks remain possible even with using the prefix-free FastXPath referencing as
outlined here. Thus, an additional strong server-side defense is still required in order
to further reduce possible sources of errors and to decouple the verification processes
from the application logic processes as much as possible.

Signature Creation. The Signature Creation module then creates the XML Signature
for the document parts to be signed. The signature creation is in conformance with the
undelying standards. To reach the targeted goal of a more unique and strict binding of
the signature to its content all references are given as prefix-free FastXPath expressions.

3.3 Server-Side Signature Verification Process

In correspondence with the client-side approach, the server-side Web Service process-
ing flow is extended using an integrated architecture of five modules that protect the
server-side implementation from being compromised by an XSW attack. The goal of
the XSpRES server-side processing is to extend the verification steps to include checks
on the message structure and to evaluate the strict and unique binding enforced by the
client-side modules (see Figure 5).

First, the incoming message is processed by the DoS Detection module to ensure that
the XML document is of finite length. The XML Schema Validator module then uses a
hardened XML Schema to guarantee that there are no unexpected elements contained in
the message. Both, the Referencing Verification module and the Prefix Transformation
module assure that the signed parts are accessed by the correct FastXPath expression
and the XML Signature Verification module finally verifies the signature. All of these
components are described in more detail in the following sections.

DoS Detection. The DoS Detection module is not a required component from the XSW
perspective, but is a general must have protection. Such a DoS detector ensures that
the XML document is of finite length and henceforth prevents the overflooding of the
machine’s memory–especially in the case in which a DOM based parser is used, since
each element in the XML message is instantiated as an object in memory.

162 C. Mainka et al.

The XSpRES system includes a DoS detector and uses it to also check on the ap-
pearance of ID attributes. If an ID attribute occurs twice, the processing of the message
on the server-side is aborted. This addition to the DoS Detector suppresses basic XSW
attacks, in which the signed message part is duplicated or moved (including the ID
attribute), in an very early processing stage.

XML Schema Validation. The XML Schema Validation module uses a hardened XML
Schema to validate the incoming SOAP messages. This schema overrides the default
XML Schema for SOAP messages by removing any possibility for placing arbitrary el-
ements in the document as described in [16]. The drawback of this approach is that the
schema validation of a hardened XML Schema is slower compared to the standard one,
as each element must be validated. Therefore, the XSpRES implementation merges as
few schemas as possible to minimize the total schema size. The considered schemas
include WS-Security, WS-Utilities, XML Signature, XPathFilter2 and WS-Addressing
(whereas the latter might also be negligible depending on the requirements of the un-
derlying application scenario).

Note that the server gateway schema must be adjusted to the document structure of
each to be protected Web Service, since the SOAP body element does no longer allow
xs:any child elements.

Referencing Verification. The Referencing Verification module verifies the security
policy. Therefore, it extracts the XPath expressions from a local policy file and, ana-
logue to its client-side complement, validates if these are valid FastXPath expressions.
This ensures that the horizontal and vertical position of the signed fragments is fixed.

Prefix Transformation. The Prefix Transformation module transforms the FastXPath
expressions to their namespace-free equivalents to prevent namespace injection attacks.

In contrast to the corresponding client-side module, the received message is checked
in addition. An incoming message is parsed and a lookup for a valid Timestamp
element is made. Thereafter, the expressions in the XPath element children of the sig-
nature’s Reference element are string-compared to those transformed FastXPath ex-
pressions from the policy file. This assures that both, the client and the server side, use
the same policy.

Signature Verification. The XML Signature Verification module simply verifies the
XML Signature in the document. As the WS-SecurityPolicy modules assures that the
signed elements use the correct XPath expressions, the signed fragments are horizon-
tally and vertically fixed, so that no known attack moved these message parts.

3.4 Backwards Compatibility and Standards Compliance

An important characteristic of the XSpRES architecture is the backward compatibility,
meaning that all parts of the XSpRES architecture are able to handle communication
not originating from another XSpRES-instrumented client or server. More precisely,
the server-side XSpRES extension is able to process arbitrary types of XML Signa-
tures, even if they originate from a different XML Signature creation framework than

Making XML Signatures Immune to XML Signature Wrapping Attacks 163

the XSpRES client-side modules. Vice versa, the XML Signatures generated by the
XSpRES client-side modules remain fully compliant to the XML Signature specifica-
tion, hence can also be verified by any other XML Signature verification implementa-
tion, even if it is not following the XSpRES approach.

However, obviously, the effectiveness of the XSpRES defense against the XSW at-
tack is reduced drastically by using non-XSpRES components at either side, since this
breaks the comprehensiveness of XSpRES falling back to the present state of the art.

4 Implementation and Evaluation

The implementation of each single XSpRES component is realized by only standard
Java libraries. It is available as free and open source software at https://www.bsi.
bund.de/SharedDocs/Downloads/DE/BSI/Downloadserver/SOA/XSpRES.html.

The client gateway acts as a simple HTTP server and signs an incoming message by
using the FastXPath expressions extracted from a local policy file. These expressions are
validated and transformed as described in Section 3.2. The signed message is afterwards
forwarded to the server gateway.

The server gateway is based on the Apache Axis2 (http://ws.apache.org/axis2/) Web
Services Framework and the XSpRES components are integrated as an Axis2 mod-
ule. Thus, by this integration method, the XSpRES module can replace the signature
verification of the commonly used Apache Rampart (http://axis.apache.org/axis2/java/
rampart/) security module.

Figure 6 compares the signature verification of the Rampart module with all security
features of the XSpRES prototype. The setup uses an AMD Athlon II X3 440 Processor
with 4GB RAM.

Both, the XSpRES and the Rampart module do semantically the same: They validate
the timestamp in the message header and verify the signature over the Timestamp
element as well as the SOAP body element. The technical difference is that Rampart
uses two ID-based references, one for the timestamp and the other for the SOAP body.
XSpRES instead uses only one reference which selects both elements with the trans-
formed FastXPath expressions from the policy file.

The measurement of the time required to verify the signature starts after the HTTP
request has been received and ends just before the verified message is forwarded to
the application logic. The processing time is then computed as the average of 1000
messages. The measurements have been conducted for different message sizes.

As can be seen from the visualized evaluation results given in Figure 6 both modules
operate approximately equal in speed, but the Rampart module has the lack of the ad-
ditional security features in relation to XSW attacks. It is also notable, that the runtime
for Rampart is the same for any kind of invalid messages, whereas the XSpRES module
will abort the verification process in an early stage if the message violates the schema
or the policy.

A detailed runtime analysis for each XSpRES component is shown in Figure 7 for
one common message size. The DoS detection takes 7ms although the StAX parser has
to process the whole document. The DOM based Schema validation needs only 3ms,
because the instantiation of the XMLSchemaFactory, which processes the Schema files,

164 C. Mainka et al.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250

R
un

tim
e

(in
 m

s)

Document Size (in KB)

XSpRES
Rampart

Fig. 6. Runtime comparison of XSpRES and Rampart

Fig. 7. Runtime analysis of XSpRES components for 200 KB message

is done once in the startup phase and thus saves 9ms per validation. The signature com-
ponent can be divided into three parts: The slowest part is the conversion from the Axis2
Object Model to a Java Document Object. The policy validation is extremely fast, as
it just searches for the transformed FastXPath expressions in the Reference element
and string-compares them to those in the local policy file. The signature validation
requires 6ms. In its current implementation, XSpRES uses the common DOM-based
processing model. This will be replaced by a faster streaming-based signature valida-
tion [20,21] in a future work.

It must be mentioned, that the XSpRES prototype implementation is focused on
security and not on efficiency in the first place. Nevertheless, Figure 6 shows that it is
comparable to the Rampart security module. One reason for this is, that XSpRES is very
light-weight, i.e., it is only capable of handling digital signatures. Rampart, in contrast,
is much more complete in the sense of standards-compliance, including features such as
encryption, username token, which impacts on the time required for signature verifica-
tion. On the other hand, the processing time of the XSpRES modules can be improved
significantly. By aligning the object models of the various deployed Java components,
the need for the costly object conversion would be eliminated, reducing the processing
time by one third.

Making XML Signatures Immune to XML Signature Wrapping Attacks 165

5 Conclusions and Outlook

The use of SOA and Cloud concepts for the construction of distributed applications
handling more and more sensitive data is on the rise. XML is playing an important
role in such applications, since it is used for encoding data at rest as well as data in
transit. The security demands coming with the processing and storage of sensitive data
rely on robust and effective security technologies. Recent discoveries showed that the
XML Security specifications include serious flaws and thus can currently not fulfill the
required protection levels readily.

This work contributes a comprehensive approach to face these vulnerabilities pro-
viding an architecture which compiles a set of inter-linked protection mechanisms for
the client-side as well as the server-side. The selection and composition of the protec-
tion means have been guided by the requirements to realize the targeted architecture in
an effective, but still standard-compliant and cost efficient way. Based on this ground
work, an open-source XSW protection library has been implemented, which is robust
against all known instances of the XSW attack and thus provides a vehicle to generate
and verify signed XML documents and messages in a fail-safe and standard-compliant
manner. The seamless integration of the developed library into standard Web Services
frameworks has been another requirement, enabling—amongst others—to evaluate the
developments in a common SOAP setting. The obtained results emphasize that the pro-
posed approach fulfills the targeted goals and provides an effective protection against
XSW attacks at low computational extra costs and by still being standard-compliant.

XSpRES has been focussed on SOAP-based Web Services in the first place, due to
the availability of practical attacks and the pressing need for more reliable and fail-safe
security mechanisms. Still, the overall concept and architecture has been designed and
implemented with generality in mind. Hence, the adoption of XSpRES to other domains
and standards is currently undertaken. The recently reported XSW-related vulnerabili-
ties in SAML-based identity and access management systems pose new challenges [4].
Since SAML assertions are a rather special case, it needs to be elaborated in detail,
how the ideas from XSpRES can be applied. The authors of this paper also covered
two interesting countermeasures to protect against XSW: (1) See-what-is-signed and
(2) Data-Tainting. The first approach extracts all unsigned elements out of the XML
message. As this could break the compatibility with some frameworks, e.g. because it
expects a specific root element, which is removed since it is unsigned, the authors sug-
gest to leave all ancestors of singed elements untouched. Thus, only unsigned sibling
elements are removed. A problem with this approach is that the application logic may
depend on some unsigned contents and cannot process the message correctly. In this
case, Data-Tainting can be applied, which touches the problem that a common signa-
ture verification logic only returns a boolean value (valid/invalid). This techniques en-
forces the signature verification logic to taint the processed data by adding a randomly
chosen attribute-value to the element. The value is then transmitted to the application
logic using a separate channel. Both techniques could also be integrated into XSpRES
to increase the level of security.

Beyond these improvements, further research activities are targeting the required
schema hardening process (as briefly discussed in Section 3.3). Here, the challenge is
to convert a set of specifications that are used in conjunction into a single, hardened

166 C. Mainka et al.

XML Schema description that no longer contains any schema extension points (such as
e.g. xs:any or xs:anyAttribute structures). This way, there is no ambiguity in
placement of critical message parts, hence preventing XSW attacks most effectively.

To some extent, this task of schema hardening can be automated. For instance, ev-
ery occurrence of a schema extension point can be replaced automatically with an
xs:Choice or xs:Sequence structure containing all XML schema types that may
occur at these extension points. The crux is, obviously, to select the proper set of al-
lowed specifications for each extension point. Here, a semi-automated approach, in-
volving manual selection of specifications per extension point, then automated genera-
tion of the hardened XML Schema file, appears most promising. However, some further
challenges have to be addresses, such as recursions in XML Schema structures, or al-
ternative XML schemata for identical message parts.

Acknowledgements. This work was funded by the Federal Office for Information Se-
curity in Germany (BSI) under the contract number 882/2010. Further, M. Jensen’s con-
tribution was partially funded by the EU FP7 project FutureID under GA nr. 318424.

The authors would like to thank Holger Junker and Juraj Somorovsky for many fruit-
ful discussions and their valuable input.

References

1. Ticau, S.A.: Security – a centrail issue of the future EU digital agenda. Service Oriented
Architecture pushed to the limit in eGovernment (2010)

2. Imamura, T., Dillaway, B., Simon, E.: XML Encryption Syntax and Processing. W3C Rec-
ommendation (2002)

3. Bartel, M., Boyer, J., Fox, B., LaMacchia, B., Simon, E.: XML Signature Syntax and Pro-
cessing. W3C Recommendation (2008)

4. Somorovsky, J., Mayer, A., Schwenk, J., Kampmann, M., Jensen, M.: On breaking saml:
Be whoever you want to be. In: 21st USENIX Security Symposium, Bellevue, WA (August
2012)

5. McIntosh, M., Austel, P.: XML signature element wrapping attacks and countermeasures. In:
SWS 2005: Proceedings of the 2005 Workshop on Secure Web Services, pp. 20–27. ACM
Press, New York (2005)

6. Gruschka, N., Lo Iacono, L.: Vulnerable Cloud: SOAP Message Security Validation Revis-
ited. In: ICWS 2009: Proceedings of the IEEE International Conference on Web Services.
IEEE, Los Angeles (2009)

7. Bhargavan, K., Fournet, C., Gordon, A.D.: A semantics for Web Services authentication.
Theoretical Computer Science 340(1), 102–153 (2005)

8. Bhargavan, K., Fournet, C., Gordon, A.D., O’Shea, G.: An advisor for Web Services Security
policies. In: SWS 2005: Proceedings of the 2005 Workshop on Secure Web Services, pp. 1–9.
ACM Press, New York (2005)

9. Kaler, C., Nadalin, A.: Web Services Security Policy Language (WS-SecurityPolicy) 1.1
(2005)

10. Gudgin, M., Hadley, M., Rogers, T.: Web Services Addressing 1.0 - SOAP Binding. W3C
Recommendation (2006)

11. Rahaman, M.A., Schaad, A., Rits, M.: Towards secure SOAP message exchange in a SOA.
In: SWS 2006: Proceedings of the 3rd ACM Workshop on Secure Web Services, pp. 77–84.
ACM Press, New York (2006)

Making XML Signatures Immune to XML Signature Wrapping Attacks 167

12. Lawrence, K., Kaler, C.: Web Services Security Policy Language (WS-SecurityPolicy) 1.2
(2007)

13. Gajek, S., Liao, L., Schwenk, J.: Breaking and fixing the inline approach. In: Proceedings of
the 2007 ACM Workshop on Secure Web Services (SWS 2007), pp. 37–42. Association for
Computing Machinery, Fairfax (2007)

14. Somorovsky, J., Heiderich, M., Jensen, M., Schwenk, J., Gruschka, N., Lo Iacono, L.: All
your clouds are belong to us security analysis of cloud management interfaces. In: Proceed-
ings of the ACM Cloud Computing Security Workshop, CCSW (2011)

15. Gajek, S., Jensen, M., Liao, L., Schwenk, J.: Analysis of signature wrapping attacks and
countermeasures. In: ICWS, pp. 575–582 (2009)

16. Jensen, M., Meyer, C., Somorovsky, J., Schwenk, J.: On the effectiveness of xml schema
validation for countering xml signature wrapping attacks. In: First International Workshop
on Securing Services on the Cloud, IWSSC 2011 (2011)

17. Jensen, M., Liao, L., Schwenk, J.: The curse of namespaces in the domain of xml signature.
In: SWS, pp. 29–36 (2009)

18. Jensen, M.: Analysis of Attacks and Defenses in the Context of Web Services. PhD thesis,
Ruhr-University Bochum (2011)

19. Mainka, C., Jensen, M., Lo Iacono, L., Schwenk, J.: XSpRES: Robust and Efective XML
Signatures forWeb Services. In: Closer 2012: 2nd International Conference on Cloud Com-
puting and Services Science (April 2012)

20. Gruschka, N., Jensen, M., Lo Iacono, L., Luttenberger, N.: Server-side streaming processing
of ws-security. IEEE T. Services Computing 4, 272–285 (2011)

21. Somorovsky, J., Jensen, M., Schwenk, J.: Streaming-based verification of xml signatures in
soap messages. In: Proceedings of the 2010 6th World Congress on Services, SERVICES
2010, pp. 637–644. IEEE Computer Society, Washington, DC (2010)

Automated Non-repudiable Cloud Resource Allocation�

Kassidy Clark, Martijn Warnier, and Frances M.T. Brazier

Faculty of Technology, Policy and Management, Delft University of Technology,
Jaffalaan 5, Delft, The Netherlands

{k.p.clark,m.e.warnier,f.m.brazier}@tudelft.nl

Abstract. This paper presents an Intelligent Cloud Resource Allocation Service
(ICRAS) that assists consumers with the complex task of finding the optimal
configuration of Cloud resources given a consumer’s specific needs. The process
of selecting a CSP becomes increasingly complex as the number of Cloud Ser-
vice Providers (CSP) offering similar services continues to grow. Consumers can
pick and choose between CSPs based on a growing number of options, including
price, Quality of Service, reputation and so forth. The advent of dynamic pricing
(based on real-time availability) further increases the complexity of CSP selec-
tion. ICRAS alleviates much of this burden from the consumer by automating
the processes of service discovery, evaluation, negotiation and migration. Fur-
thermore, ICRAS monitors Service Level Agreement (SLA) compliance using
non-repudiable monitoring techniques.

1 Introduction

Cloud computing [2] provides the illusion of unbounded online resources, such as cpu
or storage capacity. Companies that offer these resources are referred to as Cloud Ser-
vice Providers (CSP). The Cloud is sometimes also called elastic since customers can
easily increase or decrease resource usage, such as the amount of computing power,
rented from a CSP.

Similar Cloud services are offered through a number of CSPs that compete on price
and service levels. Several of these CSPs also offer a whole pallet of options to their
customers who can customize their own service based on metrics such as price, Quality
of Service (QoS), reputation and location. Note that most of these metrics are dynamic,
i.e. they change continuously. For example, some CSPs, such as Amazon Web Services
spot pricing, offer dynamic pricing. This enables that the price of resources changes
constantly, which reflects underlying factors, such as Cloud utilization, fluctuating en-
ergy prizes or consumer demand [3,4].

In this environment, a consumer of Cloud services faces several challenges. First,
to obtain the desired initial configuration of Cloud resources, a consumer must evalu-
ate prices and configuration options (QoS levels, location, etc.) of all available CSPs.

� This is an updated an extended version of the paper “An Intelligent Cloud Resource Alloca-
tion Service - Agent-based automated Cloud resource allocation using micro-agreements” [1]
presented at the 2nd International Conference on Cloud Computing and Services Science
(CLOSER 2012).

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 168–182, 2013.
c© Springer International Publishing Switzerland 2013

Automated Non-repudiable Cloud Resource Allocation 169

The task of finding the ideal configuration is further complicated as more CSPs imple-
ment dynamic pricing. When a consumer chooses the configuration that is currently the
most appropriate, a better (cheaper) configuration may become available soon there-
after. Therefore, a consumer must periodically reevaluate configurations at all available
CSPs. If a consumer chooses to move from his or her current CSP to a different CSP
with a more suitable configuration, the consumer is then faced with the challenge of mi-
gration. Due to inoperability of CSPs and the tendency towards vendor lock-in, chang-
ing CSPs is not a trivial task. Finally, once a consumer chooses a CSP, the consumer
must continually monitor the service to detect any violations to the service agreement.
Moreover, the consumer must also give evidence, for example in the from of an audit
trail, that a violation has actually taken place.

To assist a consumer with these challenges, this paper introduces an Intelligent Cloud
Resource Allocation Service (ICRAS). ICRAS supports the consumer throughout the
lifecycle of a Cloud service. This includes, (1) discovering all available resource con-
figurations, (2) choosing the desired configuration, (3) negotiating a service agreement
with the CSP, (4) assisting in the migration of services between CSPs and (5) securely
monitoring the service agreement for violations.

ICRAS aggregates information describing the available services from multiple CSPs,
including current price, availability, Quality of Service guarantees, location and repu-
tation. When a consumer requires resources, it contacts ICRAS with a description of
the computing needs. ICRAS then matches the resource request to the most appropriate
configuration of Cloud resources from the CSPs. ICRAS facilitates the negotiation of
the necessary Service Level Agreements (SLA) with the CSPs on behalf of the con-
sumer and assists in the migration process.

ICRAS then monitors the services during the lifetime of the SLA to ensure that
there are no agreement violations. If violations are detected, corrective action can be
taken. Service monitoring is performed using secure modules at both the consumer and
provider. Further steps are taken to generate an audit log of service message. Using sev-
eral cryptographic protocols, this audit log can guarantee integrity and non-repudiation
of service messages.

The main contributions of this paper are an Intelligent Cloud Resource Allocation
Service (ICRAS) that (1) maximizes the utility of the consumer, (2) supports the con-
sumer throughout the lifecycle of a Cloud service, (3) utilizes micro agreements in order
to quickly react to changes in the Cloud service market (e.g. a lower price from a com-
peting CSP), and (4) provides monitoring of the SLA which results in an audit trail that
provides non-repudiation and integrity.

The remainder of this paper is organized as follows. Section 2 introduces the core
concepts used in automated negotiation and service monitoring. The ICRAS archi-
tecture is detailed in Section 3. The ICRAS protocol is explained with a use-case in
Section 4. Section 5 gives an overview of an prototype implementation of the ICRAS
framework in the AgentScape platform. In Section 6, other automated service negotia-
tion architectures are compared. Finally, the implications of this research are discussed
in Section 7 and the paper is concluded in Section 8.

170 K. Clark, M. Warnier, and F.M.T. Brazier

2 Automated Negotiation and Monitoring

Negotiation is the process by which one or more parties, with possibly conflicting goals,
together search for a mutually acceptable agreement [5]. The negotiation process con-
sists of proposals, counter-proposals, trade-offs and concessions, as each party attempts
to maximize its own utilities (e.g. outcomes). A common utility function for consumers
in the context of Cloud computing is to reduce costs while achieving the desired re-
sources and maintaining reasonable Quality of Service (QoS)

Much research has been done in recent years on the area of automating the negoti-
ation process using intelligent software agents [6,7,5,8,9]. In this paper, an agent is be
defined as a piece of software that is capable of autonomous action [10].

In the marketplace, agents represent the individual parties of a negotiation. Given a
user’s preferences and a negotiation strategy, agents are able to communicate with other
agents to autonomously negotiate agreements. Furthermore, agents can learn from past
social interactions and improve their response to changes in the environment or even
take proactive measures when opportunity arises. The agent model supports message
passing and autonomous decision making useful for automated negotiation.

2.1 Service Level Agreements

The product of a successful negotiation session is an agreement between the parties that
stipulates the terms and conditions of the service. This agreement is referred to as Ser-
vice Level Agreement (SLA). An SLA contains the names of the parties involved, the
services to be provided and the QoS guarantees that apply. Several standards have been
proposed for formalizing the negotiation and creation of the SLA document, including
the Web Service Agreement (WSAG) [11] and Web Service Agreement Negotiation
(WSAN) [12] specifications.

The WSAG specification describes the steps taken during SLA negotiation, as well
as how SLAs are represented. The objects used in negotiation are 1) Templates, 2)
(Counter-) offers and 3) Agreements. Templates are used by service providers to de-
scribe the services they offer, including specific configurations of price, QoS guaran-
tees and so forth. These services are listed in the template with constraints such as
ExacltyOne and OneOrMore. Upon request, a service provider sends his or her
templates to a service consumer. Based on the templates, the consumer makes one or
more Offers. An offer is an instantiated template. This occurs when a consumer chooses
a specific configuration of services from a template along with their associated guaran-
tees. If both parties accept an offer, an Agreement is created. The final agreement lists
the parties involved, the exact services being provisioned and the specific guarantees
(QoS) that apply. If the offer is not accepted, either a counter-offer is created with a
new configuration or the negotiation session is terminated.

2.2 Micro Agreements

Agreements specify the terms and conditions of a service for a defined period of time.
For instance, home-owners typically make a long-term agreement with the power com-
pany for a period of one year or more. The agreement typically stipulates that the home-
owner may not migrate to another energy provider until the end of the period. This fixed

Automated Non-repudiable Cloud Resource Allocation 171

pricing period benefits the provider two fold. First, it provides a reliable income source
for the period. Second, it improves the accuracy of the usage prediction used for buying
or generating electricity. Energy providers can make more accurate assumptions about
energy consumption if their customers cannot suddenly move to a different provider.

The disadvantage of long-term agreements is that the customer cannot react to
changes in the market, such as new providers or cheaper products. In practice, prices are
constantly changing due to the constant balance of supply and demand. However, these
changes are not immediately reflected in the price the customer pays, due to long-term
agreements. Furthermore, due to fixed pricing, customers have no incentive to shape
their demand to conform to supply. This results in lowered market efficiency.

An alternative to a long-term agreement is a micro-agreement. A micro-agreement is
a short-term agreement with a period on the scale of seconds, hours or days. By keeping
the period of fixed-pricing short, consumers are able to benefit from dynamic pricing,
also referred to as real-time pricing. Using micro-agreements, consumers are able to
shape their demand on an hourly basis, in response to changes in price. This approach
increases market efficiency, lowers price and reduces the amount of unconsumed (e.g.
wasted) resources. Dynamic pricing has been investigated in the area of energy markets
with promising results [13].

From a technical perspective, short term agreements differ only slightly from
classical agreements. No fundamental changes to the negotiation protocol are
required. Protocols, including WSAN described above, already support renegotiation
of existing agreements. A micro-agreement is just an agreement with a much shorter
time-to-live (TTL). Additional resources are needed to handle the high frequency of
agreement (re)negotiation, including hardware resources. For instance, if a single CSP
has 100 customers with month-long agreements, that CSP needs resources (e.g. mem-
ory, CPU and so forth) to handle 100 agreement (re)negotiations per month. However,
if agreements expire after 1 hour, this CSP must process approximately 100 agreement
(re)negotiations every hour.

2.3 Service Monitoring

Monitoring is used to detect SLA violations when they occur and to identify the offend-
ing party, if possible. In some cases, no responsible party can be identified (e.g. force
majeur). For instance, if a lightning strike disables the communication lines between
a consumer and a provider, the consumer may incorrectly conclude that the provider
has violated the SLA. Monitoring data can be used to show that the provider was not
responsible for the violation.

A commonly used approach to monitoring is referred to as active monitoring. Active
monitoring performs specific measurements at specified intervals. Active monitoring is
used to monitor SLAs [14,15]. A service is monitored by periodically testing whether
the terms of an SLA have been met by all parties. This may require measuring a single
variable or a complex aggregation of variables. For instance, ‘Host is reachable.’ may be
measured by a single request/response action. In contrast, ‘Host uptime is greater than
99%.’ is often measured by polling a host multiple times and calculating the average
rate of success.

172 K. Clark, M. Warnier, and F.M.T. Brazier

An important aspect of monitoring is safeguarding objectivity of monitoring results.
A party to an agreement may have an incentive to manipulate the results to his or her ad-
vantage. For instance, an SLA may stipulate that a consumer receives financial compen-
sation if a specified service is unreachable. Regardless of the actual status of the service,
that consumer may want to manipulate monitoring results to make it appear unreachable
and therefore collect financial compensation. To prevent this situation from occurring,
a Trusted Third Party (TTP) is used to perform monitoring measurements [16,15]. A
TTP is an independent party that can access all communication between the parties to
the SLA. To prevent parties from manipulating the measurement results collected at
their respective locations, a TTP install Trusted Monitoring Modules (TMM) at each
partys location. The use of TMMs allows parties to have more equal access to the same
QoS metrics. For instance, a consumer may not allow a provider to access sensitive
client data directly. However, a TMM allows a TTP to access this data in a secure way.
Thus, the provider has ‘indirect’ access to the data via the TTP and will be notified if
it reveals any SLA violations. Which TMMs are required to access which QoS metrics
depends on a specific SLA.

Active monitoring can be combined with an alternative monitoring technique,
referred to in this paper as passive monitoring [17,18]. Passive monitoring uses crypto-
graphic primitives to generate a secure audit log of all service messages. The cryp-
tographic primitives offer integrity and non-repudiation of these messages between
consumer and provider. If a conflict arises regarding SLA compliance, the audit log
is analyzed to determine which party (if any) has violated the SLA.

3 ICRAS Architecture

The Intelligent Cloud Resource Allocation Service (ICRAS) requires an underlying ar-
chitecture, consisting of three major components: 1) a consumer, 2) a CSP and 3) an
ICRAS agent. These elements represent the three roles in the marketplace, which may
contain multiple instances of each. Furthermore, this architecture provides the mech-
anisms and protocols that enable these parties to communicate with one another and
autonomously negotiate micro-SLAs. SLAs are negotiated and created following the
WSAN specification. This architecture is illustrated in Figure 1.

3.1 Consumer

Each consumer interacts directly with an ICRAS agent. A consumer specifies his or her
requirements in an SLA offer. This document allows a consumer to specify 1) hard and
2) soft requirements, 3) priorities, 4) ranges of options, and 5) dependencies between
requirements. For instance, a consumer requires 10 virtual servers with a combined
CPU power of 20 GHz and a combined storage of 2 TB. Using the SLA notation, a
consumer expresses that the CPU and storage requirements are strict, however, for a
reduced price, the actual number or servers can change.

In addition to providing the initial resource requirements, a consumer is also respon-
sible for updating these requirements. If resource requirements change, a consumer
must inform an ICRAS agent of these changes. A change in requirements can occur

Automated Non-repudiable Cloud Resource Allocation 173

TMM

A

MS

ICRAS (TTP)

Cloud Service Providerx Cloud Service Providery
ATMM TMM

A

concurrent negotiation with
 multiple CSPs using
 WSAG protocol

A

Consumer

interaction with ICRAS for
best price / QoS for given

preferences

monitoring service
periodically gathers
monitoring data from

Trusted Monitoring Modules

Fig. 1. ICRAS architecture with a consumer negotiating with two competing CSPs

for several reasons. First, based on current events or past experience, a consumer can
predict increases or decreases in computing needs. For instance, online retailers receive
more traffic leading up to the holidays. Second, a change in business needs can prompt
an immediate reconfiguration of the resource requirements. For instance, a company de-
cides to remove some legacy applications. Finally, a company’s resource requirements
can change due to developments in the market, such as increased competition or lower
consumer demand.

To enable such changes, a consumer monitors the level of activity on his or her Cloud
resources and informs the ICRAS agent if a threshold is crossed and a new configuration
is necessary.

The consumer must also host a Trusted Monitoring Module (TMM) as described in
Section 2.3. This module gives the ICRAS agent, acting as the de facto Trusted Third
Party (TTP), access to relevant service metrics. The ICRAS agent can thus accurately
assess the user experience of the service. Passive monitoring is supported by extending
the TMM to include the necessary cryptographic protocols.

3.2 CSP

To enable participation in the ICRAS architecture, a CSP must offer a compatible inter-
face that is accessed by the ICRAS agent. This interface must support two main func-
tions: negotiation and migration. For negotiation, a CSP must generate SLA templates.
For this, a CSP requires access to internal information of its Cloud. This includes real-
time pricing data, Cloud utilization and system health (QoS) information, if available.
On the basis of this information a CSP generates SLA templates describing the avail-
able resources. Due to the dynamic nature of CSP resource availability and pricing,
these SLA templates are updated regularly.

Upon request, the SLA templates are delivered to the ICRAS agent. When the ICRAS
agent makes an offer, the CSP enters a negotiation session. The strategy that drives this

174 K. Clark, M. Warnier, and F.M.T. Brazier

negotiation is determined by the CSP negotiation policy. This policy includes functions
for evaluating an offer, threshold values for acceptance or rejection of an offer and rules
governing the creation of counter-offers.

To support data migration to and from its Cloud, the CSP interface must support
the import and export of virtual disk images. After creating an SLA with a consumer,
the CSP must support the uploading and import of the consumer’s virtual disk images.
Likewise, these virtual disk images are exported and downloaded upon request.

To support monitoring, the CSP must also host a Trusted Monitoring Module (TMM)
that gives the ICRAS agent access to relevant service metrics, such as network latency
and so forth. The TMM can also include support for the cryptographic protocols re-
quired for passive monitoring.

3.3 ICRAS Agent

This paper assumes that an ICRAS agent is maintained by an independent, trusted third
party (TTP). This service has no loyalty to any particular CSP and therefore can operate
fully on behalf of participating consumers. The ICRAS agent has five major responsi-
bilities: 1) discover CSP resource offerings, 2) evaluate these offerings, 3) negotiate an
SLA with a CSP on behalf of a consumer, 4) monitor the provisioning of the new Cloud
resources to detect SLA violations and 5) assist in migration to the new CSP.

Discovery. The process begins when an ICRAS agent receives a resource request from
a consumer. The agent then queries all CSPs for one or more SLA templates describing
their available resource offerings. This process is repeated at a regular interval to dis-
cover more appropriate configurations even after an SLA has been created. Depending
on a consumer’s preferences, he or she is notified if a new and better suitable configu-
ration is discovered. The consumer is then given the option to renegotiate a new SLA.

Evaluation. Once received, the agent compares the CSP templates to the consumer’s
request. If a CSP cannot provide any of the requested resources, this CSP is removed
from consideration. The remaining templates are then evaluated and ordered using the
preferences of the consumer. For instance, if a consumer specifies that price is the most
important attribute, the remaining templates are arranged by price. Depending on a
consumer’s requirements, templates from multiple CSPs can be selected for separate
resource requirements. For instance, a consumer may allow processing and storage to
be handled by two separate CSPs, if this meets the price and QoS needs.

Negotiation. Once the best template has been selected, the ICRAS agent contacts the
responsible CSP to begin negotiations. If multiple templates from competing CSPs are
considered to be acceptable, these CSPs are contacted for simultaneous negotiations. If
a negotiation session results in an offer that is acceptable by both a CSP and the ICRAS
agent (according to a consumer’s request), this is sent to the consumer for final approval.
If acceptable, the consumer contacts the CSP directly to create a micro-SLA. A micro-
SLA is used so that a consumer can migrate to a new configuration or renegotiate the
current configuration if the opportunity arises.

Migration. Once a consumer decides to migrate, the consumer services are migrated to
the new CSP. In the most straightforward case, migration involves stopping the cloud

Automated Non-repudiable Cloud Resource Allocation 175

instances at the current CSP, converting these instances (e.g. disk images) to the format
used by the new CSP, transferring them to the new CSP and starting them again. The
conversion process is not necessary if CSPs adopt the same industry standard, such as
the Open Virtualization Format [19].

If services cannot be stopped during migration, live migration is required. Live mi-
gration of cloud instances can be possible if both CSPs are using the same virtualiza-
tion layer [20]. However, the heterogeneity of current CSPs complicates the migration
process.

Monitoring. The task of the ICRAS agent does not stop after an SLA has been created
and a service is being used. The ICRAS agent also assumes the role of Trusted Third
Party (TTP) and monitors the service to detect SLA violations by either party. Using
TMMs at each party, the ICRAS agent periodically measures service performance at
both the source (CSP) and end user. The ICRAS agent uses a dedicated Monitor Service
(MS) to monitor the SLA for QoS violations, such as slow network response [16]. If a
violation is detected, parties are notified so corrective action can be taken.

When using passive monitoring, the ICRAS agent acts as the mediator of any con-
flicts that occur. As mediator, the agent requests audit logs from all parties. These logs
are then analyzed to determine which, if any, party has violated the SLA. The full me-
diation process is explained in detail in [17].

4 ICRAS Protocol

This section gives an example scenario to demonstrate the process of ICRAS mediated
negotiation. This example involves two competing CSPs, a single ICRAS agent and a
single consumer. Service requests, SLA templates and offers are presented in generic
format rather than their official XML format.

Step 1. A consumer requires Cloud resources. A consumer specifies these needs using
an SLA offer. This request is summarized in Figure 2. In this request, a consumer indi-
cates that it needs 10 servers with CPU power between 1.5. and 3.0 GHz, at least 2 TB
of storage and at least 1 GB of traffic. Furthermore, the consumer prefers the Windows
OS, requires an availability of between 95 and 100 percent and a price below 1000
Euro. This resource request is sent to the CSP .

Step 2. The ICRAS agent receives the request of the consumer and queries all partici-
pating CSPs for their SLA templates.

Step 3. Each CSP receives the query and responds by sending SLA templates that de-
scribe the current resource offering to the ICRAS agent. If the templates have not yet
been generated or are outdated, they are (re)generated at this point. The SLA template is
generated following the WSAG specification. Example templates from two competing
CSPs are shown in Figure 3. In these templates, each CSP displays the current resource
offering.

Step 4. Upon receiving the templates, the ICRAS agent evaluates each template using
the consumer’s request. If a template cannot meet the requirements, it is immediately
removed from consideration. In Figure 3, the template from CSPx is removed because

176 K. Clark, M. Warnier, and F.M.T. Brazier

RESOURCE REQUEST
Num. of Servers = (10)
CPU GHz = (1.5 - 3.0) | CD:C1, VI:V1
Storage (GB) = (2000 - *) | CD:D100, VI:V1
Traffic (GB) = (1 - *) | CD:D1, VI:V1
Operating Sys. = <Windows, Linux> | PC:YES
Availability = [95 - 100) | CD:C2, VI:V1
Price (EUR) = [0 - 1000) | CD:D2, VI:V1

Fig. 2. Consumer generated resource request

SLA TEMPLATE CSPx SLA TEMPLATE CSPy
Num. of Servers = 100 Num. of Servers = 50
CPU GHz = 2.0 CPU GHz = 3.0
Storage (GB) = 8000 Storage (GB) = 4000
Traffic (GB) = 1000 Traffic (GB) = 500
Operating System = Linux Operating System = {Windows OR Linux}
Availability (%) = 90 Availability (%) = 99

Fig. 3. SLA template from two competing CSPs

the availability offering is outside of the range specified by the consumer. In the case that
more than one template remain after the first selection, the ICRAS agent evaluates them
again to determine the most appropriate option. This evaluation is done by comparing
key attributes, such as CPU or Availability.

Step 5. At this point, the ICRAS agent has selected the best matching CSP. The ICRAS
agent generates an initial SLA offer, as shown in Figure 4. The ICRAS agent then
contacts the selected CSP to begin negotiations. Following the WSAN specification,
the negotiation consists of rounds of offers and counter-offers. If no mutually acceptable
offer can be found, negotiation terminates and the ICRAS agent selects a different CSP.
However, in the event that a mutually acceptable offer is found, this offer is sent on to
the consumer.

Step 6. Once the consumer receives the offer, it re-evaluates the offering and, if accept-
able, contacts the CSP directly to create a micro-SLA. After the SLA has been created,
the service can be used.

Step 7. Upon successful creation of an SLA, the consumer migrates his or her services
to the new CSP. This involves converting the virtual disk images to the format used by
the new CSP and then transferring these images to the new CSP.

Step 8. Upon successful creation of an SLA, the ICRAS agent takes on the new task of
monitoring the service on behalf of the consumer. Monitoring is done by periodically
measuring key service metrics and storing the result. If a violation is detected (e.g.
Availability is less than promised.), the consumer is notified and corrective action (e.g.
fines, credits, and so forth) is taken. In addition to SLA monitoring, the ICRAS agent
also periodically requests and evaluates SLA templates from all CSPs. If a new offering
is more appropriate than the current one, the consumer is notified and migration can
take place.

Automated Non-repudiable Cloud Resource Allocation 177

SLA OFFER
Num. of Servers = 10
CPU GHz = 3.0
Storage (GB) = 3000
Traffic (GB) = 10
Operating System = Windows
Availability (%) = 99
Price (EUR) = 500

Fig. 4. ICRAS agent generated offer

5 Prototype Implementation

The ICRAS architecture is implemented using the AgentScape distributed middleware
platform [21]. AgentScape is a distributed platform for mobile agents designed to be
open, scalable, secure and fault-tolerant. This middleware provides mechanisms for
SLA negotiation, inter-agent communication and migration. Software (Java) agents are
used to represent the three major components: Consumer, ICRAS agent and CSP.

Two CSPs are chosen that fullfil the minimum standards of interoperability to sup-
port the example: Amazon Web Services1 and CloudSigma2. On each of these CSPs
a server instance is used to host a software agent running on AgentScape. Each agent
uses their respective API to query price information and generate an SLA template
describing each CSP’s resource offerings.

An ICRAS agent runs on an instance of AgentScape on a local server. This agent
collects templates from the agents running at each CSP. When the ICRAS agent has
found the most suitable configuration, it is sent to the consumer agent, running on a
separate instance of AgentScape on a separate local server. If a new CSP is chosen
by the consumer, migration is assisted by the ICRAS agent. Virtual disk images are
downloaded from the old CSP, converted to their target format using QEMU [22] and
then uploaded to the new CSP.3

6 Related Works

Agent technology is being applied to the task of automated resource negotiation in many
areas, including the area of Grid computing. Despite minor differences, Grid computing
is an area that closely resembles Cloud computing in that both provide a paradigm of
utility computing [23]. Tianfield uses agents to automate the task of resource negotiation
in Grid computing [24]. As in the ICRAS architecture, agents are used to represent
resource providers and brokers in a market. Agents apply a set of strategies to negotiate
an agreement for resources. Agents are able to span multiple administrative domains
to negotiate access to the necessary resources for a specific job. As with ICRAS, this

1 http://aws.amazon.com/
2 http://www.cloudsigma.com/
3 Note that due to lack of standardization, a separate ad hoc solution for disk image migration is

required for each unique pair of CSPs.

http://aws.amazon.com/
http://www.cloudsigma.com/

178 K. Clark, M. Warnier, and F.M.T. Brazier

allows for the possibility that a single SLA includes resources from several different
providers.

Sim proposes a similar architecture for automating negotiation of SLAs for Cloud
resources [25]. Similar to ICRAS, this architecture supports multi-level, concurrent ne-
gotiation between multiple consumers, brokers and providers. A major difference be-
tween these two architectures and the approach used by ICRAS is the notion of time.
These architectures negotiate per job, rather than per unit of time. Once an SLA is cre-
ated, there is no way to dynamically respond to changes in price, utilization, and so
forth. These architectures lack the benefits of micro-SLAs. There is also no impartial
service to monitor the provisioning of resources according to the agreement.

Instead of agents, intelligent mapping of SLA templates is used in [26] to increase
the success rate of matching Cloud service offerings to service requests. A set of public
SLA templates is used as the basis of matching providers to consumers. Providers link
their own template to the public template that most closely matches. The consumer then
searches for a public template that matches his or her needs and contacts the related
provider. To account for discrepancies between templates, users can add metadata that
specifies mappings between their template and a public template. Furthermore, public
templates slowly evolve to match market trends.

This approach aims to offer consumers an increased chance of finding the most ap-
propriate resource configuration, but does not actively assist the consumer. There is no
party that works on behalf of the consumer to navigate the large number of resource
offerings and dynamic prices to find the most suitable CSP and negotiate an SLA.
Moreover, the service migration and SLA monitoring process are left entirely to the
consumer.

In contrast to the works described above, the ICRAS framework attempts to han-
dle the entire lifecycle of a Cloud service, rather than only one or more pieces. ICRAS
matching service offers to requests, such as [26] and negotiates agreements, such as [24]
and [25]. In addition, ICRAS handles migration between CSPs and monitors agree-
ments to detect possible violations.

7 Discussion

CSPs typically offer multiple interfaces to their Cloud resources, including a web in-
terface for human access, as well as a scriptable, Application Programming Interface
(API) for automated access. The API allows the consumer to purchase, launch, control
and terminate Cloud resources. Furthermore, the API often gives the consumer access
to pricing information. There are efforts to standardize the Cloud interface. Such efforts
include the Eucalyptus [27] and OpenStack [28] open source APIs.

Another aspect that requires standardization is the data format used by clouds. CSPs
use virtual disk images to encapsulate a consumer’s data. These disk images use varying
formats, including Amazon’s AMI, Microsoft’s VHD and VMWare’s VMDK. If data
is stored in one of these formats, there is no straightforward process to migrated to a
different CSP using a different format. Each image must first be converted, following a
sometimes slow and complex conversion process. While each format has its supporters,
a standardized format can be used to increase the level of interoperability. The Open
Virtualization Format [19] has been suggested for this purpose.

Automated Non-repudiable Cloud Resource Allocation 179

If widely adopted, these standards will make data and service migration between
CSPs more straightforward. However, the main obstacle to their adoption is vendor
lock-in [29]. CSPs have no incentive to make the process of service migration possible,
let alone straightforward; therefore, migrating away from a CSP remains a difficult task.
A consumer does not always have the option to export or download their virtual disk
images from a CSP. This means, once a consumer has migrated to a particular CSP,
the cost and hassle of leaving that CSP prohibits them from doing so, even if a better
configuration is found at a different CSP. Note that complete state-full migration, i.e.,
where a snapshot of a running image is migrated and the state of the newly migrated
image is updated, is still an open research question. The discussed solution would only
preserve the state until the snapshot is made, so some state is lost (when the image is
migrating).

Finally, wider adoption of dynamic pricing in Clouds is needed to allow users to react
to changes in real market forces, including Cloud utilization. Some providers have be-
gun offering dynamic pricing models to reflect the actual fluctuation of resource supply
and demand. Dynamic pricing is beneficial to both consumers and providers of Cloud
resources. Consumers can shift demand to cheaper time slots, such as evening or week-
end processing, to save on costs. CSPs can take advantage of demand shifting to lower
costs during peak periodes. For instance, a CSP can reduce the cost of cooling a data
center at noon on a hot day by making it cheaper to use the data center at night.

Cloud computing was originally envisioned as a utility, similar to the electricity grid,
where users can simply plug in to their computing needs. To enable this vision, more
standardization and openness is required in the Cloud interface and data format.

The incompatibility of CSPs as discussed above greatly limits the ability to evaluate
ICRAS. Preferably, an (exhaustive) evaluation would be performed to test and compare
various metrics, such as migration delay, negotiation success rate and so forth. How-
ever, vendor lock-in of data formats prevents this. The scenario described in Section 5
uses two CSPs that are specifically chosen for their (limited) interoperability. However,
even with these two carefully chosen CSPs, the experiment can only function in one
direction. Migration is possible from CSP1 to CSP2 but not the other way around. CSPs
must adopt open standards, as discussed above, before more extensive evaluation of
ICRAS is possible.

8 Conclusions

As the Cloud continues to grow and attract users, the number of providers and Cloud
resources increases. Consumers need new mechanisms to make the process of finding
the most appropriate Cloud resource configuration as straightforward and automated
as possible. There are many attributes that must be compared when choosing the right
Cloud provider, including QoS, reputation and price.

The Intelligent Cloud Resource Allocation Service (ICRAS) gives Cloud consumers a
straightforward interface to finding the most suitable Cloud resource configuration. This
service compares all available offers and monitors the current price information. In ad-
dition, the service mediates the creation of micro-SLAs. Using micro-SLAs allows con-
sumers to respond to changes in the market and renegotiated their services for lower prices
or different providers. The ICRAS also monitors the service for any SLA violations.

180 K. Clark, M. Warnier, and F.M.T. Brazier

ICRAS benefits the consumer by relieving them of the task of constantly monitoring
all CSPs to find the lowest price. CSPs also benefit from ICRAS by gaining more market
visibility. For instance, by participating with ICRAS, a small CSP can compete directly
with larger, established CSPs, as consumers compare resource offerings independent of
name recognition.

ICRAS also offers both parties the assurance that any SLA violations will be de-
tected and reported. As an impartial party, ICRAS can monitor services without fear
of bias. The passive monitoring techniques employed also generate a secure audit log
that records all service messages. This log can be used to guarantee integrity and non-
repudiation of these messages.

Future work will investigate the creation of complex SLAs. For instance, a consumer
requires storage and compute power. One CSP offers the lowest price for storage, while
another the lowest price for compute power. In this case, two separate SLAs are needed.

Additional CSP attributes will also be researched, including reputation and location.
The geographical location of a CSP determines the laws that apply to the data [30].

Acknowledgements. This work is supported by the NLnet Foundation
(www.nlnet.nl).

References

1. Clark, K.P., Warnier, M., Brazier, F.M.T.: An intelligent cloud resource allocation service
- agent-based automated cloud resource allocation using micro-agreements. In: The Pro-
ceedings of the 2nd International Conference on Cloud Computing and Services Science,
CLOSER 2012 (2012)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Communications of the
ACM 53, 50–58 (2010)

3. Pueschel, T., Anandasivam, A., Buschek, S., Neumann, D.: Making Money With Clouds:
Revenue Optimization Through Automated Policy Decisions. In: 17th European Conference
on Information Systems (ECIS 2009), Verona, Italy, pp. 355–367 (2009)

4. Anandasivam, A., Premm, M.: Bid Price Control and Dynamic Pricing in Clouds. In: 17th
European Conference on Information Systems (ECIS 2009), Verona, Italy, pp. 328–341
(2009)

5. Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Wooldridge, M., Sierra, C.: Auto-
mated negotiation: prospects, methods and challenges. Group Decision and Negotiation 10,
199–215 (2001)

6. Koritarov, V.: Real-world market representation with agents. IEEE Power and Energy Mag-
azine 2, 39–46 (2004)

7. Jonker, C., Treur, J.: An Agent Architecture for Multi-Attribute Negotiation. In: International
Joint Conference on Artificial Intelligence, vol. 17, pp. 1195–1201. Lawrence Erlbaum As-
sociates LTD (2001)

8. Brazier, F., Cornelissen, F., Gustavsson, R., Jonker, C., Lindeberg, O., Polak, B., Treur, J.:
A multi-agent system performing one-to-many negotiation for load balancing of electricity
use. Electronic Commerce Research and Applications 1, 208–224 (2002)

9. Ouelhadj, D., Garibaldi, J., MacLaren, J., Sakellariou, R., Krishnakumar, K.: A Multi-agent
Infrastructure and a Service Level Agreement Negotiation Protocol for Robust Scheduling in
Grid Computing. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.)
EGC 2005. LNCS, vol. 3470, pp. 651–660. Springer, Heidelberg (2005)

www.nlnet.nl

Automated Non-repudiable Cloud Resource Allocation 181

10. Agent Technology: Foundations, Applications, and Markets. In: Jennings, N., Wooldridge,
M. (eds.) Applications of Intelligent Agents, pp. 3–28. Springer (1998)

11. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-Agreement)
GFD-R-P.107. Technical report, Global Grid Forum, Grid Resource Allocation Agreement
Protocol (GRAAP) WG (2007)

12. Waldrich, O., Battre, D., Brazier, F.M.T., Clark, K.P., Oey, M.A., Papaspyrou, A., Wieder,
P., Ziegler, W.: WS-Agreement Negotiation: Version 1.0 (GFD-R-P.193). Technical report,
Open Grid Forum, Grid Resource Allocation Agreement Protocol (GRAAP) WG (2011)

13. Borenstein, S.: The long-run efficiency of real-time electricity pricing. The Energy Jour-
nal 26, 93–116 (2005)

14. Ludwig, H., Dan, A., Kearney, R.: Cremona: an architecture and library for creation and
monitoring of WS-agreements. In: 2nd International Conference on Service Oriented Com-
puting, pp. 65–74. ACM, New York (2004)

15. Quillinan, T.B., Clark, K.P., Warnier, M., Brazier, F.M.T., Rana, O.: Negotiation and mon-
itoring of service level agreements. In: Wieder, P., Yahyapour, R., Ziegler, W. (eds.) Grids
and Service-Oriented Architectures for Service Level Agreements. CoreGRID, pp. 167–176.
Springer, New York (2010)

16. Clark, K.P., Warnier, M., Quillinan, T.B., Brazier, F.M.T.: Secure monitoring of service level
agreements. In: IEEE Fifth International Conference on Availability, Reliability and Security
(ARES 2010), pp. 454–461 (2010)

17. Khader, D., Padget, J., Warnier, M.: Reactive monitoring of service level agreements. In:
Grids and Service-Oriented Architectures for Service Level Agreements, Core GRID, pp.
13–22. Springer (2010)

18. Clark, K., Warnier, M., Brazier, F.M.T.: Self-adaptive service monitoring. In: Bouchachia, A.
(ed.) ICAIS 2011. LNCS (LNAI), vol. 6943, pp. 119–130. Springer, Heidelberg (2011)

19. Crosby, S., Doyle, R., Gering, M., Gionfriddo, M., et al.: Open virtualization format specifi-
cation 1.1.0. Technical report, DSP0243, Distributed Management Task Force, Inc. (2010)

20. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.:
Live migration of virtual machines. In: Proceedings of the 2nd Conference on Symposium
on Networked Systems Design & Implementation, NSDI 2005, vol. 2, pp. 273–286. USENIX
Association (2005)

21. Overeinder, B., Brazier, F.: Scalable Middleware Environment for Agent-Based Internet
Applications. Applied Parallel Computing. State of the Art in Scientific Computing 3732,
675–679 (2005)

22. Fabrice, B.: Qemu, a fast and portable dynamic translator. In: USENIX 2005 Annual Tech-
nical Conference, FREENIX Track, pp. 41–46 (2005)

23. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree com-
pared. In: Grid Computing Environments Workshop, GCE 2008, pp. 1–10. IEEE (2008)

24. Tianfield, H.: Towards agent based grid resource management. In: IEEE International Sym-
posium on Cluster Computing and the Grid, CCGrid 2005, vol. 1, pp. 590–597. IEEE (2005)

25. Sim, K.M.: Towards complex negotiation for cloud economy. In: Bellavista, P., Chang,
R.-S., Chao, H.-C., Lin, S.-F., Sloot, P.M.A. (eds.) GPC 2010. LNCS, vol. 6104, pp. 395–406.
Springer, Heidelberg (2010)

26. Breskovic, I., Maurer, M., Emeakaroha, V., Brandic, I., Altmann, J.: Towards autonomic mar-
ket management in cloud computing infrastructures. In: International Conference on Cloud
Computing and Services Science, CLOSER (2011)

27. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov,
D.: The eucalyptus open-source cloud-computing system. In: 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, CCGRID 2009, pp. 124–131. IEEE (2009)

182 K. Clark, M. Warnier, and F.M.T. Brazier

28. OpenStack: Openstack: Open source software for building private and public clouds (2011),
http://www.openstack.org

29. Weiss, A.: Computing in the clouds. NetWorker 11, 16–25 (2007)
30. Ruiter, J., Warnier, M.: 17. Computers, Privacy and Data Protection: an Element of Choice.

In: Privacy Regulations for Cloud Computing, Compliance and Implementation in Theory
and Practice, pp. 293–314. Springer (2011)

http://www.openstack.org

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 183–199, 2013.
© Springer International Publishing Switzerland 2013

The IVI Cloud Computing Life Cycle

Gerard Conway1 and Edward Curry2

1 Innovation Value Institute, National University of Ireland, Maynooth, Ireland
2 Digital Enterprise Research Institute, National University of Ireland, Galway, Ireland

gerard.conway@nuim.ie, ed.curry@deri.org

Abstract. Cloud computing has the promise of significant benefits that include
reduced costs, improved service provisioning, and a move to a pay-per-use
model. However, there also are many challenges to successfully delivering
cloud-based services; including security, data ownership, interoperability, ser-
vice maturity and return on investment. These challenges need to be understood
and managed before attempting to take advantage of what the cloud has to of-
fer. In this paper we introduce a nine-step cloud life cycle that can be used for
both the migration and the ongoing management of public, cloud-based servic-
es. A consortium of organizations using an open-innovation approach devel-
oped the life cycle. This paper describes each step of the life cycle in terms of
the key challenges faced, and the recommended activities, with resultant out-
puts, needed to overcome them.

Keywords: Cloud Computing, Project Management, Outsourcing, Life Cycle.

1 Introduction

The move to a cloud computing environment has started in earnest with the complete
spectrum of businesses, from large multinationals to smaller organizations, moving
their IT services to cloud computing platforms. There are many drivers for this, with
reduced costs being the most commonly cited reason [1]. Cloud services may be
provided in a pay-per-use model that allows companies to pay only for what they
actually need, with the flexibility of increasing or reducing capacity in line with
business demand. In effect, cloud computing offers the advantage of switching from a
Capital Expense (CapEx) to an Operational Expense (OpEx) cost model that “charges
back” the cost to the consumers of IT [8] whilst promising to deliver a reduced Total
Cost of Ownership (TCO). Cloud computing also provides greater flexibility and
agility as new applications and services can be deployed in less time [2].

A major driver of cloud computing is the pressure on IT departments to deliver
more and enhanced services with reduced budgets, whilst responding to ever-
increasing and ever-changing business requirements. Cloud computing is also seen as
a way to free up IT resources to concentrate on core activities, by outsourcing non-
core activities such as management of e-mail systems. An internal IT department
running cloud-based services can focus its energy on services that offer core business
value to the business, whilst letting the cloud service provider deal with the non-core
services. While cloud computing promises significant benefits, there are many

184 G. Conway and E. Curry

challenges to successfully delivering cloud-based services [3]. These challenges need
to be understood and managed before attempting to take advantage of what the cloud
has to offer. In this paper, a cloud life cycle approach is introduced and it is shown
how such an approach can be used for both the migration and the ongoing
management of public, cloud-based services.

2 Challenges with Managing Cloud Projects

Despite all of the claims made on behalf of cloud computing, it is not a panacea for all
the problems faced by companies and their IT departments. Bitter experience has
shown that if an IT department is struggling to deliver services, a move to cloud com-
puting will either leave them in the same mess or potentially make if far worse. Be-
fore we delve into the key challenges to managing cloud projects, it is important to
understand that cloud computing comes in four primary deployment models: public,
community, private, and hybrid.

• Public Cloud. Public cloud infrastructure is owned by an organization selling
cloud services to the general public or to a large industry group. Two examples are
Amazon Web Services (AWS) and Microsoft Azure.

• Community Cloud. Community cloud infrastructure is shared by several
organizations and supports a specific community that has a shared mission and
shared goals, security requirements, policies, and compliance considerations. An
example is Google Gov.

• Private Cloud. Private cloud infrastructure is owned or leased by a single
organization and it is operated solely for that organization. Intel, Hewlett Packard
(HP) and Microsoft have their own internal private clouds.

• Hybrid Cloud. Hybrid cloud infrastructure consists of two or more clouds (public,
community, or private) that remain unique entities but are bound together by
standardized or proprietary technology that enables data or application portability.

Within this work we have initially targeted the adoption challenges of migrating to a
public cloud. There are a number of key challenges faced by companies that want to
move to a public cloud as detailed in Table 1 [10].
In order to overcome these challenges, organizations need a systematic means of re-
viewing their business needs and weighing up the potential gains and opportunities
against the risks, so that the transition to cloud computing is strategically planned and
understood.

3 Defining the Life Cycle

In order to deliver the advantages and overcome the challenges faced by organizations
that want to migrate to cloud computing, there is now a need to define a management
framework for how a cloud migration project can be successfully managed. However,
because the field is new and evolving, few guidelines and best practices are available
To address this shortcoming, a consortium of leading organizations from industry,
(including: Microsoft, Intel, SAP, Chevron, Cisco, The Boston Consulting Group,

 The IVI Cloud Computing Life Cycle 185

Table 1. Chalanges of Cloud Computing Adoption

Risk Area Description

Security [12] [13] [15] Physical and personnel security: Access to physical machines and cus-

tomer data may not be adequately controlled. Identity management: Access

to information and computing resources may not be controlled. Application

security: The applications available via the cloud, may not be secure

Data Confidentiality: Indirect control of data leakage prevention and

latent problems with security in a multi-tenant architecture

Availability / Business

Continuity
The potential for downtime from either the cloud service provider or from

the Internet.

Vendor/Data lock-in Vendors use unique and proprietary user interfaces, application program-

ming interfaces (API) and databases.

Software Licensing Many licenses for packaged application software still restrict the physical

machines on which the software can run

Lack of Standards There is no standard open architecture defined for the cloud [4]. Each of the

major cloud providers (Amazon Web Services, Salesforce’s force.com,

Google App Engine, and Microsoft Azure) impose architectures that are

both different from each other, and from the common architectures cur-

rently used for enterprise applications.

Enterprise level: support,

service maturity and

functionality

Cloud computing services may not provide the levels of reliability, man-

ageability, and support required by large enterprises. Today, many services

are aimed primarily at Small and Medium Enterprises (SMEs) and at con-

sumers, rather than large enterprises.

RoI The expectation is that external cloud computing can reduce costs for large

enterprises as well as SMEs. However, the cost advantages for large enter-

prises may not be as clear as for SMEs, since many large enterprises can

reap the benefits of significant economies of scale in their own internal IT

operations, or there is a lack of clarity on current IT consumption.

Connectivity Cloud computing is impossible if you can't connect to the internet. A dead

internet connection means no work, and in areas where internet connections

are few or inherently unreliable, this could be a problem.

Compliance How to ensure conform to local, regional and global, statutory and legal

requirements.

Trust and Viability of

service providers
How to assess the viability and trustworthiness of the cloud service

providers.

Computing Performance Latency

Scalable Programming

Ernst & Young, and Fujitsu) the not-for-profit sector, and academia have developed
and tested a life cycle for systematically managing cloud migration projects. This
section outlines the design process for the cloud life cycle, how the cloud life cycle
aligns with the IT-Capability Maturity Framework (IT-CMF), and why a life cycle
approach was taken.

186 G. Conway and E. Curry

3.1 Design Medthdology

The Innovation Value Institute (IVI; http://ivi.nuim.ie) consortium uses an open
innovation model of collaboration that engages academia and industry in scholarly
work to amalgamate leading academic theory with the best of corporate experience –
in order to advance practices for managing information technology for business value
and innovation.

The development of the life cycle was undertaken using a design process with de-
fined review stages and development activities that were based on the Design Science
Research (DSR) guidelines advocated by Hevner [14]. The approach followed a
similar design process used to develop a maturity model for Sustainable ICT [11]
within the IT-CMF.

Within this work we have initially targetted the adoption challenges of migrating to
a Public Cloud. This lead us to leverage the work by Cullen et al., 2005 [5] into the
management of IT outsourcing projects using a life cycle. The Cullen life cycle is an
in-depth piece of research on IT outsourcing that is backed up by many years of
practical experience. We have adapted Cullen’s work and applied the resulting life
cycle to the problems of managing a public cloud migration and then running the
cloud services on an ongoing basis. In particular, we examined the requirements of a
public cloud project from both the life cycle and supply chain perspectives [17]

During the design process, researchers participated together with practitioners
within research teams to research and develop the life cycle. The research team inter-
viewed multiple cloud stakeholders to capture the views of key domain experts and to
understand current practice and barriers to managing public cloud projects. The team
widely consulted the relevant literature, both industrial and academic, on cloud com-
puting. To validate the concepts and the material IVI conducted a series of workshops
with three of its partners. Each partner used the IVI Cloud Life Cycle with 5 custom-
ers, where they tested and validated the material and the concepts. Each partner col-
lated the feedback that was then jointly reviewed with IVI as a part of the workshop.

Once the life cycle was developed, it was validated within a number of organiza-
tions – with learning and feedback incorporated into subsequent versions. Cloud
projects were studied within 11 organizations in order to validate the life cycle. These
included organizations that had successfully delivered public cloud-based projects,
and also organizations that have failed cloud projects. The research approach involved
a qualitative approach to data collection. Empirical evidence was collected via semi-
structured interviews with representatives of the 11 companies. From this perspective,
the use of the interview was an appropriate research method, as it enabled depth,
nuance and complexity in data to be captured [19].

3.2 The IT-Capability Maturity Framework

IVI has developed an IT Capability Maturity Framework (IT-CMF) that is an
innovative and systematic framework, enabling CIOs/CEOs to understand and
improve their organization’s maturity and enable optimal business value realization
from IT investments [9]. IT-CMF provides a high-level process capability maturity
framework for managing the IT function within an organization to deliver greater
value from IT by assessing and improving a broad range of management practices.

The framework identifie
each process. A core funct
management system to dev
organization [7].

Within this work we util
IT-CMF to establish the ke
required level of maturity b
can be applied to both the
services.

4 The IVI Cloud L

The cloud life cycle is bro
steps as illustrated in Figur
the sequence is important a

The IVI Cloud Computing Life Cycle

Fig. 1. The IVI Cloud Life Cycle

es 33 critical IT processes and defines maturity models
tion of the IT-CMF is to act as an assessment tool an
velop IT capabilities [6] and define the posture of the

lize a combination of the life cycle approach and the use
ey areas a customer must identify for it to ensure it has
before migrating to the cloud. The resulting cloud life cy
e migration and the ongoing management of public clo

Life Cycle

oken down into four phases that are further divided int
re 1. Each step prepares the way for the following step
and must be followed for a successful outcome. The rea

187

for
nd a
e IT

e of
the

ycle
oud

to 9
, so

ason

188 G. Conway and E. Curry

for such an approach is it allows a company to break down its planning and workload
to suit its requirements. The basic premise is that a company only commits resources
one step at a time – so, as each step is completed, there is the option to stop without
losing the initial investment. This incremental approach reduces the risk associated
with cloud projects.

The four stages of the cloud life cycle are:

• Architect. The first phase starts with the investigation and planning of the cloud
project. Typically an organization will only commit a small number of high-level
resources in order to decide if they should go ahead with a full-scale project.

• Engage. The second phase selects a service provider that can deliver the required
cloud service. Many organizations decide to stop at this stage because the
appropriate cloud services are not available, or because there is no cloud provider
that they have confidence in to deliver the required cloud services.

• Operate. The third phase is the implementation and the day-to-day management of
the cloud service.

• Refresh. The fourth phase is the ongoing review of cloud services.

In line with all well-managed projects, this structure maintains control and allows a
company to stop at any step in the project and re-start when external and or internal
circumstances allow, without losing the value and investment of the work done in the
preceding steps. The following sections describe in detail the objectives, activities,
outputs and challenges for the cloud life cycle.

4.1 Phase 1: Architect

Step 1: Investigate
This step provides an insight into and an understanding of what an organization wants
to achieve by moving to the cloud, and what goals and expectations are to be met.
This will be based on an analysis of the appropriate industrial segment, with insights
from experts and experiences from peer organizations, together with knowledge of
potential suppliers. The key challenges faced in the investigate step are:

• To satisfy new requirements within an existing or a reduced budget.
• To provide a clear cost-benefit analysis of cloud services using limited or no

historical cost data.
• To clearly articulate the benefits of a move from CapEx to OpEx. This may need to

consider the current CapEx investment of decommissioning existing services
(depending on where the service is in its life cycle).

• Resistance by a perceived lack of financial control using the pay-as-you go model.
• The need for seed funding to investigate cloud options.

The critical capabilities used in the investigate step are IT Leadership and Governance
(ITG), Strategic Planning (SP), and Business Planning (BP). The key activities and
outputs of the investigate step are described in Table 2.

 The IVI Cloud Computing Life Cycle 189

Table 2. Key Activities and Outputs for Step 1: Investigate

Activities Outputs

• Determine the organization’s IT objectives and its

alignment with the business.

• Determine what role cloud computing will play within

the IT strategy.

• Gather intelligence on cloud service offerings.

• Validate with cloud subject matter experts.

• IT strategy for cloud computing.

• Strategic intent of moving to the cloud and how it

progresses the business objectives.

• Intelligence document on cloud service offerings and

providers.

• Documented understanding of what will be achieved

by comparing the strategic requirements with the

available services and providers.

Within the organizations we studied it was clearly shown that having a clear vision

and strategy of what can be achieved by moving to cloud computing was a distinct
advantage [16]. Once the strategy and vision was clearly defined and communicated,
it was a much easier task to see what services were available and what service provid-
ers could deliver. Organizations that lacked this vision experienced resistance – par-
ticularly from the user community, who were not active participants as they failed to
see the strategic and financial benefits.

Step 2: Identify
Objectively assess what areas of the business are appropriate to outsource to the cloud
and what impact this will have on the current delivery model. This will require an
understanding of the current state, so that it can be compared to the desired future
state. At a minimum, the impact on the service, people, cost, infrastructure, stake-
holders and how the impact will be managed should be considered. The key chal-
lenges faced in the identify step are:

• To define the Enterprise Architecture. This can be particularly time-consuming if
none is already in place.

• To objectively choose the appropriate service to outsource.
• To engage with both users and IT personnel who will be impacted, particularly if

their job is being altered or removed.

The critical capabilities used in the identify step include Enterprise Architecture Man-
agement (EAM) and Sourcing (SRC). The key activities and outputs of the identify
step are described in Table 3.

Table 3. Key Activities and Outputs for Step 2: Identify

Activities Outputs

• Determine what services will be outsourced to the

cloud, and consider impacts on the service, people,

cost, infrastructure, and stakeholders.

• Decide what type of cloud outsourcing model will be

used, and why it is suitable.

• Document the current and future states of the IT

infrastructure.

• A List of services to be outsourced to the cloud, with

documented understanding on impacts to service,

people, cost, infrastructure, and stakeholders.

• A Cloud outsourcing model, with documented

justification.

• Documented current and future states of the IT

structure.

190 G. Conway and E. Curry

Choosing the correct service to outsource was influenced by the maturity of the ser-
vice and the desired functionality. Organizations that successful migrated to the cloud:
had a well-defined Enterprise Architecture, engaged both users and suppliers at an early
stage, and recruited external expertise in areas not covered by internal resources. Organ-
izations that attempted to correct problems with their existing services by simply mov-
ing them to the cloud, failed, as they just moved the problem to the new environment.

Step 3: Implementation Strategy
Define at a strategic level how the cloud services that are to be outsourced will be
rolled out. This will document how key decisions will be made later on, by defining
strategies on: staffing, communication, program roll-out, organizational rules, and risk
assessment. The key challenges faced in the implementation strategy step are:

• To get the commitment and support to make key resources available.
• To clearly define business and technical requirements.
• To fully engage key stakeholders and users.
• To agree a formal decision–making / sign-off process with stakeholders.

The critical capabilities used in the implementation strategy step are Business Plan-
ning (BP) and Risk Management (RM). The key activities and outputs of the imple-
mentation strategy step are described in Table 4.

Table 4. Key Activities and Outputs for Step 3: Implementation Strategy

Activities Outputs

• Determine the roll-out approach and how the

program will be managed.

• Detail how the program will be staffed and reported.

• Decide how cloud suppliers will be engaged,

selected and managed.

• Determine how risks will be assessed and

managed, including data recovery and in-sourcing.

• A program roll-out strategy.

• A Communication strategy.

• A strategy to manage staff impacted by the migration

to cloud.

• A Cloud risk management strategy.

• A Cloud supplier management strategy.

One of the key findings of our research was that organizations that wanted to move

to the cloud needed to fully understand the impact of the migration on the user com-
munity, and on IT support staff. Those organizations that did not understand this
impact and that failed to plan accordingly either lost key resources or experienced
resistance from the IT and user community – both during and after the migration.

Step 4: Business Design
Design what is to be outsourced to the cloud and what the future state will look like.
This will detail the new service, how it will be managed, how it interfaces to the exist-
ing / remaining systems, and how it will be monitored and reported. To provide re-
quirements with sufficient detail to have a meaningful conversation with suppliers so
that they can be objectively compared, based on cost and quality of service. The key
challenges faced in the business design step are:

• To provide a clear definition of the existing and desired interfaces.
• To clearly define what is negotiable / non-negotiable.
• To engage and build a relationship with the stakeholders that is based on trust.

 The IVI Cloud Computing Life Cycle 191

The critical capabilities used in the business design step are Enterprise Architecture
(EAM) and Service Provisioning (SRP). The key activities and outputs of the business
design step are described in Table 5.

Table 5. Key Activities and Outputs for Step 4: Business Design

Activities Outputs

• Detail the service offering you wish to tender for.

• Clearly define negotiable / non-negotiable issues around

contracts, service-level agreements (SLA), and pricing model

• Detailed and clear tender documents for

cloud suppliers.

The research demonstrated that organizations that developed clear and concise ten-

der documentation had improved discussions with suppliers without placing undue
limitations and constraints on what could be provided. Conversely, those organiza-
tions that had poorly-defined requirements spent a lot of time in discussions with
suppliers and were driven by the supplier’s agenda.

4.2 Phase 2: Engage

Step 5: Select
Based on the requirements and the other criteria defined by the Architect phase this
step will select the best supplier based on value, sustainability, and quality. The key
challenges faced in the selection step are:

• In a lot of cases it was found that the cloud supplier provided the Contract, Service
Level Agreement (SLA) and pricing as a standard offering. The challenge was to
ensure all business and user requirements were still satisfied.

• To balance requirements between what functionality is available now, with what
will be available in the future.

• To retain objectivity and do a thorough background check on all suppliers.
• To have a back-out / alternatives strategy if things change or go wrong.
• To retain the overall strategic intent and core requirements; that is, do not

compromise to get a particular service up and running.

The critical capability used in the select step is Sourcing (SRC). The key activities
and outputs of the select step are described in Table 6.

Table 6. Key Activities and Outputs for Step 5: Selection

Activities Outputs

• Define the tender/bid process.

• Select and staff an evaluation team.

• Invite bids/tenders.

• Evaluate suppliers against the defined criteria.

• Shortlist the supplier(s).

• Carry out due diligence.

• A tender process.

• Evaluation criteria.

• A shortlist of suitable suppliers with caveats.

• A Due diligence report.

192 G. Conway and E. Curry

The organizations that were successful were characterized by:

• Only accepting solutions that had the required functionality.
• The active involvement of the user community via surveys and by validation of the

proposed solution.
• Choosing suppliers that were prepared to work and resolve issues prior to the

migration.

Organizations that compromised by accepting partial functionality with the promise
of enhanced functionality at a later stage, or that skipped proper validation to meet
deadlines, ended up with problems that led to failure of the cloud services, or were
very expensive to rectify.

Step 6: Negotiate
This step is to complete the final negotiation, pick the preferred supplier, get internal
approval and sign the contract(s). The key challenges faced in the negotiate step are:

• To maintain control and objectivity by resisting any major last-minute changes in
order to achieve sign-off; in other words be prepared to walk away.

• To have clearly defined and agreed contingency plans for disaster and change
scenarios.

• To understand the cloud supplier get-out clauses and to make sure there is enough
time to move cloud services in-house, or to an alternative cloud supplier.

The critical capability used in the negotiate step is Sourcing (SRC). The key activities
and outputs of the negotiate step are described in Table 7.

Table 7. Key Activities and Outputs for Step 6: Negotiate

Activities Outputs

• Define the negotiation strategy.

• Select and staff the negotiation team.

• Carry out negotiations.

• Select the preferred cloud supplier.

• Get internal approvals and sign the contract.

• A negotiation strategy.

• Results of the negotiation.

• Signed final documents: Contract, SLA and

Pricing document.

Our research showed significant variations in the attitude of cloud suppliers to ac-
commodate client requirements. Some suppliers would only offer their default service
offering and standard SLA, while other cloud suppliers invested significant time and
effort to ensure they delivered on all major requirements. Those organizations that
had invested time in the earlier steps of the life cycle, particularly the engagement of
users, had a smooth sign-off with no major problems.

Problems were found with a number of organizations when they treated this final
step as a rubber-stamping exercise. One example showed that although the preceding
step highlighted issues around due diligence, the promise of a cost reduction resulted
in a binding contract being signed. As a result, major problems occurred during
implementation that lead to a contractual dispute with the supplier.

 The IVI Cloud Computing Life Cycle 193

4.3 Phase 3: Operate

Step 7: Operational Roll-out
To put together a project team that will manage the transition of the agreed services to
the new cloud service. This will require the transition of the service itself, the man-
agement of staff impacted, communication to all stakeholders, knowledge retention /
transition, and acceptance sign-off. The key challenges faced in the operational
roll-out step are:

• To keep to the desired timelines, particularly for dates that cannot be changed.
• To get access to appropriate case studies of previous successful roll-outs of similar

services.
• To resist the temptation to compromise on quality in order to maintain the

schedule.
• To get formal user and technical sign-off.

The critical capabilities used in the operational roll-out step are Service Provisioning
(SRP), Solution Delivery (SD), and Risk Management (RM). The key activities and
outputs of the operational roll-out step are described in Table 8.

Table 8. Key Activities and Outputs for Step 7: Operational Roll-out

Activities Outputs

• Finalize and publish transition plans.

• Select and staff the transition team.

• Agree and publish acceptance criteria.

• Carry out the transition.

• Communicate progress.

• Conduct knowledge transfer.

• Manage staff (directly and indirectly) impacted.

• A roll-out plan.

• Progress updates.

• A signed acceptance document.

The research has shown that many of the organizations had a very smooth transi-

tion due to: good planning, the full engagement of users, and a strong partnership with
the supplier. The research highlighted that using a phased approach that allowed the
option to roll back to an in-house version at any stage significantly reduced the risk
and exposure to the business. Organizations that experienced difficulties in the transi-
tion to cloud computing missed vital steps in their planning. Examples included: not
having the system validated and tested by end users, or reducing the time required for
testing to meet deadlines.

Step 8: Manage the Supply Chain
It is important to manage the new cloud service as efficiently and effectively as possi-
ble. The organization will need to adapt to the new setup, particularly at IT manage-
ment level – because rather than directly managing internal resources, the requirement
will be to manage the cloud supplier and in particular the supplier relationship. This
will require effective monitoring and control so that issue, variations and disputes can

194 G. Conway and E. Curry

be resolved to the satisfaction of both parties. The key challenges faced in the manage
the supply chain step are:

• The integration of the cloud service with existing support and reporting structures.
• That IT management make a smooth transition from managing their own internal

staff to managing the cloud supplier and the interfaces.
• The control, communication and coordination of internal and external changes.

The critical capabilities used in the manage the supply chain step include Capacity
Forecasting and Planning (CFP), Sourcing (SRC), Technical Infrastructure
Management (TIM), Solution Delivery (SD), Service Provisioning (SRP), and Total
Cost of Ownership (TCO). The key activities and outputs are described in Table 9.

Table 9. Key Activities and Outputs for Step 8 Manage the Supply Chain

Activities Outputs

• Manage and report at cloud service operational level.

• Capture and manage issues, variations and disputes.

• Manage the supplier relationship.

• Change management.

• Continuous improvement.

• Assess and validate how the cloud service is

performing.

• Day-to-day cloud service performance metrics.

• Status on issues, problems, variations, and

disputes.

• Supplier meeting minutes.

• A change management report.

• Audit reports.

Building a relationship with the cloud supplier was the key to success in many of

the projects we studied. Some companies have gone further and built a strategic part-
nership with their suppliers, which further increased their success. The research hig-
hlighted that the risk to the business can be significantly reduced if you retain the
flexibility to move the service back in-house or to an alternative supplier within an
agreed notice period.

Where problems arose, they were mainly around the management of the supplier.
There were examples where the supplier did not deliver as per the signed agreement
and in one instance the supplier went out of business, highlighting the need for
adequate risk assessment and mitigation.

4.4 Phase 4: Refresh

Step 9: Review
To review the cloud service requirements based on: the cloud service itself, other
changes within the business, changes within the supplier organization, or the need to
change the supplier. The key challenges faced in the review step are:

• To prioritise and get approval to start a new cloud service project cycle.

The critical capabilities used in the review step are Strategic Planning (SP), Business
Planning (BP), and Sourcing (SRC). The key activities and outputs of the review step
are described in Table 10.

 The IVI Cloud Computing Life Cycle 195

Table 10. Key Activities and Outputs for Step 9: Review

Activities Outputs

• Gather intelligence on the relevant market segment,

cloud service technology trends, and supplier

offerings.

• Audit cloud supplier performance and compare to

alternatives.

• Understand and assess how other changes in the

organization impact on the existing cloud service

arrangement.

• Based on the above inputs, regularly reassess and

review requirements.

• Make and present a business case for any significant

change to the current cloud service arrangement in

order to get approval to start a new cycle.

• An intelligence report for next generation cloud

service offerings.

• Cloud supplier audit results.

• A business case for any proposed changes.

Some of the organizations researched had a clear vision of the future that provided

them with an understanding of how cloud service offerings could be enhanced by the
use of common standards, the use of cloud brokers and a standard integrated architec-
ture. Other organizations struggled to integrate their services due to vendor lock-in
and not investing sufficient resources with the correct skills to decide what was
needed for the future. In one instance it was found that cloud services were being
purchased without any central control, leading to a mixture of solutions that was very
difficult to integrate.

5 The Life Cycle in Action

The cloud life cycle applies proven and documented project management principles
that are known by most IT and business managers. It breaks down the project into
discrete manageable stages that allows the company to gather the correct information
to make a decision before moving to the next stage. The life cycle ensures appropriate
pre-planning so that the correct partners are chosen and that the impacts on
the business are properly understood, managed, and controlled. For example it
allows a company to identify the correct services to move to the cloud and to create
plans for the impact on staff directly and indirectly impacted. It also provides a
mechanism of building up a repository of knowledge and best practices to fill the
current void created by this new use of technology, with its lack of standards and best
practice.

The steps in the Cloud Life-Cycle were surveyed to determine their importance.
The results from the 11 companies who participated are show in the following
table.

196 G. Conway and E. Curry

Table 11. Survey Results: Importance of each Life Cycle stage
A

rc
hi

te
ct

Step 1. Investigate
1. Determine the organisations IT objectives and its alignment with

the business
2. Determine what role cloud computing will play within the IT

Strategy
3. Gather intelligence on cloud service offerings
4. Validate results with cloud subject matter experts and peer organi-

sations

4.5

4.6

4.3
4.2

Step 2. Identify
5. Determine what services will be outsourced to the cloud, consider

impacts on the service, people, cost, infrastructure, and stake-
holders.

6. Decide what type of cloud outsourcing model will be used, and
why it is suitable.

7. Document the current and future states of the IT infrastructure.

4.7

4.6

4.8

Step 2. Implementation Strategy
8. Determine the roll out approach and how the program will be

managed.
9. Detail how the program will be staffed and reported.
10. Decide how cloud suppliers will be engaged, selected and man-

aged.
11. Determine how risks will be assessed and managed, including

security, data recovery and in-sourcing.

4.5

4.6
4.4
4.7

Step 3. Business Design
12. Detail the service offering for tender
13. Clearly define negotiable / non-negotiable issues around: con-

tracts, service-level agreements (SLA), and pricing model

4.4
4.5

E
ng

ag
e

Step 4. Selection
14. Define the tender/bid process.
15. Select and staff an evaluation team.
16. Invite bids/tenders.
17. Evaluate suppliers against the defined criteria.
18. Short list the supplier(s).
19. Carry out due diligence.

4.7
4.4
4.4
4.5
4.6
4.6

Step 5. Negotiate and sign-off
20. Define the negotiation strategy.
21. Select and staff the negotiation team.
22. Carry out negotiations.
23. Select the preferred cloud supplier.
24. Get internal approvals and sign the contact.

4.6
4.7
4.5
4.6
4.7

 The IVI Cloud Computing Life Cycle 197

Table 11. (continued)
O

pe
ra

te

Step 6. Operational roll-out
25. Finalise and publish transition plans.
26. Select and staff the transition team.
27. Agree and publish acceptance criteria.
28. Carry out the transition.
29. Communicate progress.
30. Carry out knowledge transfer.
31. Manage staff (directly and indirectly) impacted.

4.4
4.2
4.4
4.5
4.6
4.4
4.6

Step 7. Management
32. Manage and report on cloud service operations.
33. Capture and manage issues, variations and disputes.
34. Manage the supplier relationship.
35. Change management.
36. Continuous improvement.
37. Assess and validate how the cloud service is performing.

4.4
4.7
4.5
4.6
4.6
4.5

R
eg

en
er

at
e

Step 8. Review
38. Gather intelligence in your relevant market segment for cloud

service technology trends and supplier offerings.
39. Audit cloud supplier performance and compare to alternatives.
40. Understand and assess how other changes in the organization

impact on the existing cloud service arrangement.
41. Make and present a business case for any significant change to the

current cloud service arrangement to get approval to start a new
cycle.

4.5

4.5
4.5

4.6

5.1 Case Study: Mainstream Renewable Power

Mainstream’s IT organization already enjoyed a strong relationship with the business
and cloud computing was considered to be an integral part of their business strategy.
Using the IVI Cloud Life-Cycle highlighted the key areas where IT and the business
differed in their perceptions and understanding of the benefits of the public cloud.
Mainstream’s business executives had a more positive view of the public cloud than
their IT colleagues. The assessment results confirmed that Mainstream’s cloud com-
puting strategy already provided their initial objective of a ‘single version of the
truth’, and that the next phase was a business-led move to the public cloud on terms
agreed by all stakeholders.

‘The end vision is to completely outsource using a sustainable supplier to provide
resilient and secure services that are managed externally using a subscription model’
John Shaw, CIO, IVI Summer conference 2011.

Previous IT strategy had delivered a secure private cloud; consequently Main-
stream’s executives decided to move to the public cloud. However, as cloud computing
can be overhyped, it was vitally important to set realistic expectations and clarify risks.
The Life Cycle assessment results delivered a strong mandate to move to the public
cloud. More importantly, the assessment enabled Mainstream to convert this ambition
into a complete cloud computing roadmap with supporting cost-benefit analysis.

198 G. Conway and E. Curry

6 Conclusions

The use of a cloud life cycle has been shown to be a very good mechanism for
organizations to control and manage not only their migration but also the ongoing,
day-to-day management of their public cloud environment. The research for each of
the nine steps described above clearly demonstrates the value of using a cloud life
cycle to control and manage the move to cloud. The cloud life cycle provides an
organization with a management structure to assess the following:

• The readiness/maturity of an organization to move to the public cloud.
• How the organisation is managing the new environment on a day-to-day basis after

it is migrated.
• What new services can be moved to a public cloud environment.

Acknowledgements. The work presented in this paper has been funded by Science
Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2) and by Enterprise
Ireland under Grant CC/2009/0801.

References

1. Harms, R., Yamartino, M.: The Economics of the Cloud. Microsoft (November 2010)
2. Armbrust, B., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D.,

et al.: A view of cloud computing. Communications of the ACM 53(4), 50–58 (2010)
3. Brooks, C.: Heroku learns the hard way from Amazon EC2 outage. SearchCloud-

Computing.com (2010)
4. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utili-
ty. Future Generation Computer Systems 25(6), 599–616 (2009)

5. Cullen, S., Seddon, P., Wilcox, L.: Managing Outsourcing, The Life Cycle Imperative.
MIS Quarterly Executive, 229–256 (2005)

6. Curry, E., Guyon, B., Sheridan, C., Donnellan, B.: Developing an Sustainable IT Capabili-
ty: Lessons From Intel’s Journey. MIS Quarterly Executive 11:2, 61–74 (2012a)

7. Curry, E., Guyon, B., Sheridan, C., Donnellan, B.: Sustainable IT: Challenges, Postures,
and Outcomes. IEEE Computer 45:11, 79–81 (2012)

8. Curry, E., Hasan, S., White, M., Melvin, H.: An Environmental Chargeback for Data Cen-
ter and Cloud Computing Consumers. In: Huusko, J., de Meer, H., Klingert, S., Somov, A.
(eds.) E2DC 2012. LNCS, vol. 7396, pp. 117–128. Springer, Heidelberg (2012)

9. Curley, M.: Managing Information Technology for Business Value: Practical Strategies for
IT and Business Managers. Intel Press (2004)

10. Dillon, T., Wu, C., Chang, E.: Cloud Computing: Issues and Challenges. In: 2010 24th
IEEE International Conference on Advanced Information Networking and Applications
(AINA), pp. 27–33 (2010)

11. Donnellan, B., Sheridan, C., Curry, E.: A Capability Maturity Framework for Sustainable
Information and Communication Technology. IEEE IT Professional 13(1), 33–40 (2011)

12. Grossman, R.L.: The Case for Cloud Computing. IT Professional 11(2), 23–27 (2009)
13. Heiser, J., Nicolett, M.: Assessing the Security Risks of Cloud Computing, Gartner (2008)

 The IVI Cloud Computing Life Cycle 199

14. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems Re-
search. MIS Quarterly 28(1), 75–105 (2004)

15. Kaufman, L.M.: Data Security in the World of Cloud Computing. IEEE Security and Pri-
vacy 7(4), 61–64 (2009)

16. Li, H., Sedayao, J., Hahn-Steichen, J., Jimison, E., Spence, C., Chahal, S.: Developing an
Enterprise Cloud Computing Strategy. Intel White Paper (2009)

17. Lindner, M.A., McDonald, F., Conway, G., Curry, E.: Understanding Cloud Requirements
– A Supply Chain Life Cycle Approach. In: Second International Conference on Cloud
Computing, GRIDs, and Virtualization (Cloud Computing 2011), pp. 20–25. IARIA,
Rome (2011)

18. Mason, J.: Qualitative Researching. Sage Press, London (2002)

Performance Assessment of Web Services
in the STEP Framework

Miguel L. Pardal, Joana P. Pardal, and José Alves Marques

Department of Computer Science and Engineering
Instituto Superior Técnico, Technical University of Lisbon

Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
{miguel.pardal,joana.paulo.pardal}@ist.utl.pt,

jose.marques@link.pt

Abstract. This chapter presents a performance study of the STEP Framework, an
open-source application framework implemented on the Java platform that uses
many popular open-source libraries, including: Hibernate, JAX-WS, and Log4J.
This framework has been used for several years to teach development of dis-
tributed enterprise applications to undergrad students. This chapter also describes
the performance measurements over a flight reservation web service that is in-
cluded as an example in the source code distribution. It presents an assessment of
the web service and shows how the performance of this specific application was
studied in detail. The achieved results are put in context and compared with other
technologies, highlighting the existing trade-offs.

Keywords: Web Services, Performance, Measurement.

1 Introduction

Enterprise applications have many demanding requirements [1], and some of the most
important are related to performance. Performance analysis is a challenge [2] [3], that
can be especially hard for inexperienced developers. To verify if an implementation is
performing as expected, run-time data must be collected and analyzed. This data can be
used to compare design and configuration alternatives. However, collecting such data
in the application requires many modifications to the original source code.

The Simple, Extensible, and for Teaching Purposes (STEP) Framework1 [4] is an
open-source application framework. Its source code is intended to be small and sim-
ple enough to allow any developer to read and understand it thoroughly. The goal is to
learn how the architectural layers are implemented in practice and to be able to change
small details that are usually hidden in professional frameworks. This is especially im-
portant for students. The collected metrics allow them to better understand the existing
trade-offs of alternative approaches. In fact, this framework has been used for several
years in ‘Software Engineering’ and ‘Distributed Systems’ courses lectured at Instituto
Superior Técnico (IST), Technical University of Lisbon, to teach Computer Science
and Engineering undergrad students how to develop Web Services with enterprise-like
requirements.

1 http://stepframework.sourceforge.net/

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 200–214, 2013.
c© Springer International Publishing Switzerland 2013

http://stepframework.sourceforge.net/

Performance Assessment of Web Services in the STEP Framework 201

Before the improvements we describe here, the STEP framework did not provide
means to collect run-time data for later analysis. With this work the framework was
extended with monitoring and analysis tools that enable developers to collect actual
performance data and to use it to study how different decisions impact the overall per-
formance.

What follows is a brief overview of the STEP framework architecture, followed by
the description of a performance assessment study, detailing the new added tools and
the results of the conducted experiments over a flight reservation web service that is
available in the distribution.

2 STEP Framework Overview

The STEP Framework is a multi-layer, Java-based, enterprise-like application frame-
work. It can be used to develop Servlet/JSP Web Applications and Web Services.

2.1 Architecture

The STEP Framework defines a typical layered architecture [1]. The main layers are
Domain and Service. There are also Persistence, View, Presentation and Web Service
layers. Each layer considers different implementation concerns.

The Domain layer is where an object-oriented solution for the requirements is im-
plemented. Domain objects are persisted to a database using object-relational mapping
through the Hibernate2 library and its annotations.

The Service layer provides access to the application’s functionalities through service
objects, that access the domain objects, isolating them from upper layers, and managing
transactions to ensure atomic, consistent, isolated, and durable (ACID) persistence.

The View layer provides Data Transfer Objects (DTO) that are used as input and
output for service objects and uses JAX-B3 technology.

The Presentation layer is responsible for user interaction through a Web interface,
implemented with servlets and Java Server Pages (JSP). It uses Stripes4 but there are
also STEP variants using Struts5 and the Google Web Toolkit6.

There is a Web Services (WS) layer that provides remote access to services, using
JAX-WS7 technology.

STEP supports Extensions [5][4], a mechanism for intercepting the Service and Web
Service layers that simplifies the implementation of cross-cutting concerns. Extensions
proved very useful for implementing the performance monitors described later in the
chapter.

A STEP development branch, called SmartSTEP [6] supports WS-Policy-like auto-
matic configuration of Extensions to provide security, reliable messaging, logging, etc;
as required by parties communicating with WS.

2 http://www.hibernate.org/
3 https://jaxb.dev.java.net/
4 http://www.stripesframework.org/
5 http://struts.apache.org/
6 https://developers.google.com/web-toolkit/
7 https://jax-ws.dev.java.net/

http://www.hibernate.org/
https://jaxb.dev.java.net/
http://www.stripesframework.org/
http://struts.apache.org/
https://developers.google.com/web-toolkit/
https://jax-ws.dev.java.net/

202 M.L. Pardal, J.P. Pardal, and J.A. Marques

Fig. 1. Sequence diagram of a STEP Web Service invocation

2.2 Request Processing

The processing sequence of a request for a STEP Web Service is shown in Figure 1.
A request begins in the client application (WS Client) that sends a SOAP envelope in
an HTTP request to the server (WS). The application container at the server assigns
a thread to execute the request from start to finish. The HTTP request is interpreted
and dispatched to an instance of the JAX-WS servlet. The WS layer parses the SOAP
envelope. The payload is deserialized from XML to Java objects using JAX-B.

The Service layer receives the view objects, starts an implicit database transaction,
and invokes one or more domain objects. The Domain layer implements business logic
using entity and relationship objects. The Persistence layer maps entities and relation-
ships to database tables and vice-versa. SQL queries are generated and executed auto-
matically by Hibernate. When the application-specific logic is complete, and if no error
is reported, the Service layer commits the database transaction. Otherwise, the transac-
tion is aborted and an error is returned. The resulting views (either the required results
or the error message) are created and returned to the WS layer. The response payload
is serialized from Java objects to XML. The JAX-WS servlet sends the SOAP envelope
back to the client in the HTTP response. The request thread is typically returned to a
thread pool, for later reuse. Several requests can be executed in parallel.

3 Performance Tools

The goal of the performance assessment tools is to breakdown the overall processing
time, to identify the parts of the application that are worth improving.

Performance Assessment of Web Services in the STEP Framework 203

Performance measurement tools can be classified as tracers and profilers [2]. A
tracer [7] is a component that intercepts application code to record typed time-stamped
events. Examples of tracing tools include libraries like Perf4J8. A profiler [8] is a pro-
gram that monitors an application to determine the frequency of execution in specific
code regions. A profiler can operate using sampling (application is interrupted peri-
odically and measurements are taken), hardware counters (processor stores application
performance data), or instrumentation (application source or binary code is augmented).
Overall, sampling is faster but less accurate. There are several profiling tools available
that combine the approaches mentioned above, like JProfiler9 and YourKit10. Tracer are
more lightweight than profilers because the latter require more complex interactions
with applications [9]. Also, profilers are usually harder to use for server-side applica-
tions that have to handle multiple concurrent requests.

3.1 Our Approach

The performance tools for the STEP Framework follow the tracer approach. The goal
was to collect run-time data, to analyze it, and to test performance improvement hy-
potheses. The main metric used was request processing time to measure (and improve)
responsiveness.

The performance of Java programs is affected by application, inputs, virtual ma-
chine, garbage collector, heap size, and underlying operating system. All these factors
produce random errors in measurements that are unpredictable, non-deterministic, and
unbiased [10]. To quantify the random errors in measurements, the program runs had
to be repeated several times. The presented values are the mean of the samples with a
confidence interval (margin of error) computed with a confidence level of 90%, 95%, or
99%. At least 30 runs were executed for each program variation, so that the calculation
of the confidence level could assume a normal distribution of the samples, according to
the Central Limit Theorem [11]. Only changes in values greater than the error margin
were considered statistically relevant and not the effect of random errors.

The performance analysis process encompasses all activities necessary to generate,
collect, and analyze performance-related data. Figure 2 presents the data-flow diagram
of our approach. Each activity is performed by a specific tool: Domain Data Generator,
Load Generator, Load Executor, Monitor, Analyzer, and Report Generator.

The Domain Data Generator tool populates the database with realistic data, both in
values and in size. The data population was realized using Groovy11 scripts that parsed
data files with domain descriptions and accessed the database to insert them.

The Load Generator tool produces files with serialized request objects, following
templates for normal and error situations, creating loads that can be reproduced later.

The Load Executor tool was programmed to send requests. The script opens an object
stream, reads request objects from it, and executes the operations: think (wait), search

8 http://perf4j.codehaus.org/
9 http://www.ej-technologies.com/products/
jprofiler/overview.html

10 http://www.yourkit.com/
11 http://groovy.codehaus.org/

http://perf4j.codehaus.org/
http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.yourkit.com/
http://groovy.codehaus.org/

204 M.L. Pardal, J.P. Pardal, and J.A. Marques

Fig. 2. Performance tool chain data flow diagram

flights, create single reservation, and create multiple reservations. The requests are sent
to the specified WS endpoint. If an error is caught, the output message is logged, and the
processing continues. This tool uses a thread pool of fixed size implemented with the
java.util.concurrent package to run simultaneous virtual users and there is one thread
for each simulated user.

The Monitor is the core component of performance analysis. When enabled, it col-
lects request processing times for each architectural layer. It intercepts request process-
ing at relevant interception points (represented in Figure 1, using grey boxes at the WS,
Service and Persistence layers). Each specific interception point inserts measurement
code. STEP extensions are used to intercept both the Service and the WS layers.

The Analyzer takes all samples of execution data resulting from multiple runs us-
ing the same settings, and computes sample statistics. A complete records file is sum-
marized in a single row. For each numeric field, the mean, standard deviation, upper
quartile, median, and lower quartile are computed. Finally, the overall statistics are
computed. A similar procedure is applied to the virtual user output logs to produce er-
ror statistics from the WS client perspective that is the most relevant one for quality of
service purposes.

Finally, the Report Generator uses the statistical data produced by the Analyzer and
uses it to produce custom reports. For a more in-depth description of these tools, see
our paper on the topic[12].

Performance Assessment of Web Services in the STEP Framework 205

4 Experiments

Several experiments were conducted using the performance analysis tool chain, to iden-
tify performance problems and to propose solutions. The results are presented and dis-
cussed in this section.

4.1 Scenario System

The analyzed system was the “Flight reservation Web Service” (Flight WS) that is one
of the example applications included in the STEP Framework source code distribution.

The initial Flight WS had only one operation: “create low price reservation”. The
following additional operations were developed: “search flights”, “create single reser-
vation”, and “create multiple reservations”. The reason for adding new operations was
to allow more diverse kinds of requests using the most common data types (text, nu-
meric, date, currency, and collections) and with different message sizes.

With the new operations it became possible to instantiate all the message archetypes
defined in the JWSPerf Web Service benchmark [13], making Flight WS a typical Web
Service. To a limited degree, conclusions made using Flight WS can be extrapolated to
other WS with similar software architecture and user loads.

4.2 Hardware and Software Platform

The following machines and networks were used for the test runs.

Machine A with a Quad-core12 CPU running at 2.50 GHz, 3.25 GB of usable RAM,
and 1 TiB hard disk. It ran 32-bit Windows 7 (version 6.1.7600), MySQL 5.1.43,
Java Developer Kit 1.6.0 18, Groovy 1.7.3, Apache Tomcat 6.0.14 and STEP 1.3.3
(includes Hibernate 3.3.2.GA, JAX-B 2.1.10, JAX-WS 2.1.7, Stripes 1.5.1).

Machine B with a Dual-core13 CPU running at 2.53 GHz, 3 GB of RAM, and 500 GiB
of hard disk storage. It ran the same software.

The machines were connected either by a 100 Mbit LAN or by a 10 Mbit LAN. The
machines were configured to disable all system maintenance activities. The measure-
ments were taken for the application’s steady-state performance and not for start-up
performance, since we are concerned with the running application’s response times.
Garbage collection and object finalization were considered as part of the steady-state
server workload [14]. Unless otherwise stated, all the presented results were produced
running in Machine A.

4.3 Request Time Breakdown

Table 1 presents the request processing time breakdown. Figure 3 represents the same
data graphically.

12 Intel Core 2 Quad CPU Q8300.
13 Intel Core 2 Duo CPU P9500.

206 M.L. Pardal, J.P. Pardal, and J.A. Marques

Table 1. Request processing time breakdown

Slice Time (ms) Time %
Web 2.83 0.98
Web Service 14.33 4.94
Service 203.14 70.07
Hibernate Engine 40.97 14.13
Hibernate Writes 15.52 5.35
Hibernate Reads 13.10 4.52

Fig. 3. Request processing time breakdown

The largest time slice is Service (70%) because it includes all the application-specific
logic and also because it is the slice where the remaining – not specific to any layer –
processing time is accounted for. The second largest slice is Hibernates (24%) as it
manages the domain objects in the database. The Hibernate engine slice is significant
(14%) because it includes when data is actually written to the database, at transaction
commit time. The absolute value of roughly 300 milliseconds average processing time
is only useful to compare with other measurements made in the same machine.

4.4 Monitor Implementation Comparison

The STEP framework performance monitor [12] had several iterations. Each was an
attempt to more accurately capture the performance data.

Table 2 and Figure 4 present a comparison of the results of the same workload exe-
cuted but using different monitor implementations to capture data:

– Perf4J monitor raw records (Perf4J raw);
– Perf4J monitor with aggregated records (Perf4J agg);
– Event monitor (Event);
– Layer monitor without Hibernate wrapping (Layer -Hwrap);
– Layer monitor with Hibernate wrapping (Layer).

Performance Assessment of Web Services in the STEP Framework 207

Table 2. Request processing time percentages of different performance monitors. Each row sums
to 100% of time spent.

Monitor Web WS Svc Hib Eng Hib W Hib R
Perf4J raw 0.71 4.26 87.00 0.00 4.58 3.45
Perf4J agg 0.79 4.51 4.59 0.00 10.86 79.25
Event 0.99 5.15 83.74 0.00 5.39 4.72
Layer -Hwrap 0.89 4.82 85.17 0.00 4.82 4.30
Layer 0.98 4.94 70.07 14.13 5.35 4.52

Fig. 4. Request processing breakdown of different performance monitors

The first choice for monitor was the Perf4J14 library that uses stop-watch objects to
time the execution of code blocks: on entry, the stop-watch is started; on exit, the stop-
watch is stopped, timing of execution inside each layer. Perf4J delegates actual logging
on the Apache Log4J library, already used by the STEP Framework. The performance
events are logged in a separate log file and each stop-watch record has a start, time, tag,
and (optional) message.

At first glance Perf4J was assumed to be underestimating the value of the Hibernate
slice. Especially because the performance log files had (literally) thousands of lines stat-
ing that the time spent to load an object was 0 ms. These values were due to excessively
fine-grained measurement of Hibernate calls. In practice, each call was too short to be
accurately measured.

In the Perf4J monitor with aggregated records (Perf4J agg) the consecutive 0 ms
records were combined and the elapsed time was computed using the time-stamps. The
result of this mitigation attempt was a gross overestimation of the Hibernate slice, as
confirmed by the other monitors. The mitigation failure was confirmed also by many

14 http://perf4j.codehaus.org/

http://perf4j.codehaus.org/

208 M.L. Pardal, J.P. Pardal, and J.A. Marques

Table 3. Request processing breakdown for different request types, in percentages

Request Web WS Service Hib Eng Hib W Hib R
All 0.98 4.94 70.07 14.13 5.35 4.52
Searches 1.25 8.75 74.15 11.31 0.00 4.55
Reservations 0.71 0.83 62.69 19.37 12.17 4.23
Faults 0.83 4.60 86.73 1.96 0.00 5.89

Fig. 5. Request processing breakdown for different request types

occurrences of records where the hibernate time was larger than the service time (a
physical impossibility).

Since the results were not satisfactory, two new monitor approaches were imple-
mented: Event and Layer. The Event monitor records one data record to the log for
each interception point (just like Perf4J), producing a log file size proportional to the
number of accessed objects, and data is written to the log file immediately after each
interception. The Layer monitor keeps totals in memory and writes them to file only
once per request, at the end of the request processing.

Both Event and Layer had a lower overhead when compared to Perf4J. However only
Layer was capable of wrapping hibernate objects - Session, Transaction, etc - and cor-
rectly handling the nesting of calls between them. This difference is important as Layer
monitor without Hibernate wrapping (Layer -Hwrap column) shows. It does not capture
the Hibernate Engine slice, just like Event monitor, and a large slice of Hibernate time
is lost. For this greater accuracy, the Layer monitor with Hibernate object wrapping was
chosen as the final reference monitor that was used for all other experiments.

4.5 Request Types

In this experiment, request types are filtered and analyzed separately. Table 3 and Figure
5 present the results.

Performance Assessment of Web Services in the STEP Framework 209

Fig. 6. Request processing breakdown for increasing SOAP size

Table 4. Request processing breakdown for increasing SOAP size, in percentages

Avg. XML len. Web WS Service Hib Eng Hib W Hib R
3215 0.96 5.26 73.93 14.33 0.80 4.73
5190 0.98 4.94 70.07 14.13 5.35 4.52

28348 1.53 3.93 55.69 11.78 23.57 3.51
142145 1.60 2.35 45.16 8.95 39.35 2.59
222281 1.50 1.64 50.62 7.28 36.88 2.08

Searches are read-only, reservations are read-write. Faults were mostly produced by
invalid input, so no data was written. Notice how Hibernate Writes slice are empty on
searches and faults. The framework handling of failed transactions is efficient because
significant time savings are achieved when there is a database rollback.

4.6 Web Service Message Size

In this experiment, the SOAP message size is increased by making flight reservation re-
quests with more passengers. Figure 6 and Table 4 present a comparison of the different
workloads with increasing average XML length. The dominant slices are still Service
and Hibernate. The impact of request time is very significant, above linear progression.
Figure 7 shows the detail only for the Web and SOAP slices. The XML processing
behavior is also increasing above linear progression.

Increasing XML size has less impact than initially predicted, providing evidence
that XML parsers have been greatly optimized since the early versions where the per-
formance degradation was more significant [13]. However, there are still practical limits
for the message sizes: for messages above 150,000 characters (roughly 150 KiB assum-
ing UTF-8 encoding) the server starts to fail with java.lang.OutOfMemoryError due to
lack of Java heap space. This explains why the percentage of time spent in the service
layer (c.f. ‘Service’ column in Table 4) actually decreases with increasing XML length.

210 M.L. Pardal, J.P. Pardal, and J.A. Marques

Fig. 7. Web and Web Service layers detail of request processing breakdown with increasing SOAP
size

Table 5. Request processing breakdown for different cache settings, in percentages

Configuration Web WS Service Hib Eng Hib W Hib R
Local DB 0.98 4.94 70.07 14.13 5.35 4.52
w r-only cache 0.95 5.28 70.46 13.63 4.81 4.88
w r-w cache 0.91 5.05 65.32 13.40 4.67 10.65
100 Mbit LAN DB 0.72 4.06 65.20 16.01 8.96 5.06
w r-only cache 0.75 4.42 65.74 14.93 8.61 5.54
w r-w cache 0.68 4.19 62.33 14.76 8.16 9.88
10 Mbit LAN DB 0.28 1.88 78.50 6.83 10.64 1.88
w r-only cache 0.32 2.53 77.66 6.55 10.86 2.08
w r-w cache 0.25 1.90 77.28 6.80 10.26 3.51

4.7 Hibernate Second-Level Cache

The goal of this experiment was to measure the improvement of performance by us-
ing the out-of-the-box Hibernate second-level caching [15], EHCache (Easy Hibernate
Cache). The first-level cache is turned on by default and is managed at the Hibernate
Session object. Since each request has its own Session, the cache is not shared between
them. The second-level cache is managed at the Session Factory object and allows shar-
ing between sessions.

When running Tomcat and MySQL in the same machine, using the second level
cache actually did not improve performance (c.f. first 3 rows of Table 5). The read-only
cache has negligible effect (c.f. next 3 rows). The read-write cache actually decreases
performance (c.f. last 3 rows).

When running Tomcat in machine A and MySQL in machine B, connected by a 100
Mbit LAN, the results were only marginally worse, despite the network communication.

Only when running Tomcat in machine A and MySQL in machine B, connected by a

Performance Assessment of Web Services in the STEP Framework 211

Table 6. Request processing breakdown for increasing concurrent users

Users Web WS Service Hib Eng Hib W Hib R
1 0.98 4.94 70.07 14.13 5.35 4.52
2 1.10 4.89 70.06 14.08 4.08 5.80
4 1.21 4.04 71.09 13.58 3.97 6.11
8 2.04 4.62 65.06 17.07 5.47 5.74

16 2.75 6.07 62.55 19.56 4.80 4.26

Fig. 8. Request processing breakdown for increasing concurrent users

more constricted 10 Mbit LAN, did the read-only cache prove beneficial. However, the
request processing time for this configuration was approximately 3 times slower than
the others.

The best solution for this application is to leave the second-level cache turned off as
most caching benefits were achieved with the first-level cache.

4.8 Concurrent Users

The performance of an application in a production environment heavily depends on the
number of users, making it hard to properly test the implementation in a development
environment where a single user is available. In this experiment several virtual users
were running at the same time. Table 6 and Figure 8 present the results.

The server scales reasonably well for the tested number of users. The request pro-
cessing time stays in the same order of magnitude for a ten-fold increase in load (from
1 user to more than 10, it stays near the 1 second range).

However, there is a problem: the number of Application Exceptions stays the same
(as expected in a simulated workload) but the number of System Errors steadily in-
creases, from 0% for 1 user, to 30% for 16 users. This is caused by Hibernate optimistic
cache [15] approach that throws org.hibernate.StaleObjectStateException when it de-
tected concurrent modifications of the same objects. This happens not only for entity

212 M.L. Pardal, J.P. Pardal, and J.A. Marques

Table 7. Log level average processing time and average functional log size

Log level Time (ms) Log size (bytes)
Off 332.52 0
Fatal 332.10 0
Error 331.69 1792
Warn 333.70 1792
Info 332.91 13978
Debug 4431.41 296059571
Trace 37430.76 2029488189

Fig. 9. Request processing times for log level settings. The y axis is in logarithmic scale.

data modifications, but also for relationship modifications. The impact of this issue is
magnified because the STEP Framework cookbook15 advocates the use of a “Domain
Root” object that connects to all the main domain entities. This guideline has a mea-
surable impact on the scalability of STEP applications and should be reconsidered in
future versions.

4.9 Logging Cost

Log libraries are very important for server-side applications as a debug and diagnostics
tool. The STEP Framework and the libraries it uses rely on Apache Log4J16 to log
program messages. In this experiment, the functional log level was changed from no
messages (”off”) up to the most detailed level (”trace”). Table 7 and Figure 9 present
the results.

The cost of logging beyond “info” level is enormous, making the “debug” and “trace”
levels impractical for production environments.

15 Cookbooks available at http://stepframework.sourceforge.net/
16 http://logging.apache.org/log4j/

http://stepframework.sourceforge.net/
http://logging.apache.org/log4j/

Performance Assessment of Web Services in the STEP Framework 213

Additional detail levels could help alleviate this problem, as well has selecting partial
output only from some of the layers and not all of them, or activating them for a subset
of requests (e.g. requests from a specific user).

5 Conclusions

This chapter presented the performance assessment of a representative Web Service
developed using the STEP Framework. Performance monitoring is much harder than
first expected. Also, assembling a tool chain to collect, process, and visualize the data
is an extensive work. But the benefits of having it in place are greatly beneficial for
development, especially in an open-source, academic learning environment.

The detailed description of the performance analysis process provides insight to how
similar techniques can be used in other frameworks, and how to avoid some of the
pitfalls, in particular, regarding monitor implementation and how measurements should
always be interpreted with regard for the bias introduced by the measurement process
itself.

The presented experiment findings – time slice breakdown, monitors comparison,
request types, SOAP size, caching, concurrent users, and logging – are illustrative of
the framework’s new capabilities and of how they can be used by learning developers
make more informed decisions that help give better performance to their Web Services.

Acknowledgements. Miguel L. Pardal and Joana Paulo Pardal are supported by PhD
fellowships from the Portuguese Foundation for Science and Technology FCT (SFRH/
BD/45289/2008 and SFRH/BD/30791/2006).

The authors wish to thank Prof. Paulo Jorge Pires Ferreira for his insightful review
of an earlier manuscript.

References

1. Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., Stafford, R.: Patterns of Enterprise
Application Architecture. Addison Wesley (2002)

2. Jain, R.: The Art of Computer Systems Performance Analysis - Techniques for Experimental
Design, Measurement, Simulation, and Modeling. Wiley (1991)

3. Menascé, D.A., Almeida, V.A.F., Dowdy, L.W.: Performance by Design - Computer Capacity
Planning by Example. Prentice Hall (2004)

4. Pardal, M., Fernandes, S., Martins, J., Pardal, J.P.: Customizing Web Services with Exten-
sions in the STEP framework. Int’l Journal of Web Services Practices 3(1) (2008)

5. Pardal, M.: Core mechanisms for Web Services extensions. In: 3rd Int’l Conf. on Next Gen-
eration Web Services Practices (NWeSP). IEEE Computer Society (2007)

6. Leitão, J.C.C., Pardal, M.L.: Smart Web Services: systems integration using policy driven
automatic configuration. In: Quintela Varajão, J.E., Cruz-Cunha, M.M., Putnik, G.D., Trigo,
A. (eds.) CENTERIS 2010, Part II. CCIS, vol. 110, pp. 446–454. Springer, Heidelberg (2010)

7. Roza, M., Schroders, M., van de Wetering, H.: A high performance visual profiler for games.
In: ACM SIGGRAPH Symp. on Video Games (Sandbox 2009), pp. 103–110. ACM, New
York (2009)

214 M.L. Pardal, J.P. Pardal, and J.A. Marques

8. Shankar, K., Lysecky, R.: Non-intrusive dynamic application profiling for multitasked appli-
cations. In: 46th Annual Design Automation Conf. (DAC), pp. 130–135. ACM, New York
(2009)

9. Pearce, D.J., Webster, M., Berry, R., Kelly, P.H.J.: Profiling with AspectJ. Softw. Pract. Ex-
per. 37, 747–777 (2007)

10. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous Java performance evaluation.
In: 22nd Annual ACM SIGPLAN Conf. on Object-Oriented Programming Systems and Ap-
plications (OOPSLA), pp. 57–76. ACM, New York (2007)

11. Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers. Wiley
(2010)

12. Pardal, M.L., Pardal, J.P., Marques, J.A.: Improving Web Services performance, one STEP
at a time. In: 2nd Int’l Conf. on Cloud Computing and Services Science (CLOSER) (2012)

13. Machado, A., Ferraz, C.: JWSPerf: A performance benchmarking utility with support to
multiple web services implementations. In: Int’l Conf. on Internet and Web Applications and
Services (ICIW), pp. 159–159 (2006)

14. Boyer, B.: Robust Java benchmarking. IBM Developer Works (2008)
15. Bauer, C., King, G.: Java Persistence with Hibernate. Manning (2006)

CAP-Oriented Design for Cloud-Native Applications

Vasilios Andrikopoulos, Steve Strauch, Christoph Fehling, and Frank Leymann

Institute of Architecture of Application Systems (IAAS), University of Stuttgart,
Universitätsstr. 81, 70569 Stuttgart, Germany

Abstract. Brewer’s conjecture, and its resulting formalization as the CAP theo-
rem, impose serious limitations on the consistency, availability and network par-
titioning tolerance characteristics of distributed systems. Despite its importance
however, few works explicitly consider the implications of the CAP theorem in
the design of applications, especially for applications that are designed natively
for the Cloud. In order to address this need, in this work we propose a CAP-
oriented design methodology for Cloud-native applications. For this purpose we
build and extend our previous work on Cloud architectural patterns. Finally, we
show how the methodology can be used in practice to design an application solu-
tion with desired CAP properties.

1 Introduction

Cloud computing has been heralded as the realization of John McCarthy’s utility
computing vision, where computing is organized and offered as a public utility like
electricity and water [1]. Cloud computing allows enterprises to outsource applications,
systems and even their IT infrastructure to the Cloud, using one or more of the provi-
sioned infrastructure or software services. Amazon, for example, offers Cloud solutions
with usage-based costing, where interested parties can install and run their software
without having to care about previously critical issues like infrastructure investment,
computing power and network connectivity [2]. Salesforce.com altered radically the
enterprise computing landscape by offering customizable services on the Cloud which
were traditionally embedded in the IT domain of the enterprise. Cloud computing has
ushered a new era of consuming and producing information and information technol-
ogy by migrating the processing and storage of the information from small scale, lim-
ited purpose computing platforms like PCs, laptops and server machines to large scale,
general purpose platforms offered “somewhere on the Cloud”. This created the notion
of Cloud-native applications, i.e., applications that are specifically designed and de-
veloped on top of a constellation of Cloud services, and which can fully exploit the
characteristics of Cloud computing, e.g., elasticity [3].

Despite its revolutionary nature however, Cloud computing is underpinned by the
same fundamental principles and laws governing large, distributed networked systems.
One of the most important principles is a conjecture that Eric Brewer put forward in
his keynote speech at the ACM Symposium on the Principles of Distributed Computing
(PODC) in 2000 [4]. Brewer observed that there are three fundamental systemic re-
quirements in any distributed environment that exist in a special relationship with each
other: consistency (whether all parts of the system see the same data at the same time),

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 215–229, 2013.
c© Springer International Publishing Switzerland 2013

216 V. Andrikopoulos et al.

availability (what percentage of time the system is up and functioning properly) and net-
work partitioning (if the system is tolerant to network failures). His conjecture is that
only two out of these three requirements can actually be satisfied at any time by a dis-
tributed system. This hypothesis was later formally proven by Seth Gilbert and Nancy
Lynch of MIT [5], making it known as the CAP theorem (from the initials Consistency,
Availability and network Partitioning).

By its definition, the CAP theorem is restricting the capacity of any distributed sys-
tem to satisfy requirements related to the CAP properties, and as such it has a direct
impact on these requirements. This impact is even bigger for Cloud-native applications
where elasticity, i.e., being able to deal with shifting computational demands by scaling
up or down accordingly, is one of the basic pillars of the paradigm. Elastic applications
should be able to maintain similar (or better) CAP behavior independent of their scale
and rely on their design to do so. Studying and analyzing therefore the effect of various
architectural decisions on the behavior of the resulting application with respect to the
CAP theorem becomes an important issue and is the proposed goal of this work.

More specifically, in the following we present a design methodology for Cloud-
native applications which is oriented towards connecting design decisions with an esti-
mation of the CAP behaviour of the resulting application. Furthermore, we show how
the methodology can be realized as an extension of the Cloud Pattern Framework pre-
sented in [6]. Finally, we validate our proposal using a scenario running through the
paper.

The rest of this work is structured as follows: Section 2 motivates the need for a
CAP-oriented design methodology by means of an example. Section 3 discusses the
CAP theorem in more detail and presents the proposed application design methodology.
Section 4 shows how the methodology can be realized in practice, while Section 5
discusses validation. Finally, Section 6 summarizes the related work, before providing
some conclusions and possible future directions in Section 7.

2 Motivation

For illustrative purposes, consider the familiar example of a simple Web shop applica-
tion as depicted in Fig. 1(a). Customers browse through offered items using the Web
shop user interface (Webshop UI). If they decide to order an item, it is packaged and
sent to them by one of the stock managers in the shop using a management interface
(Management UI). Both user interfaces access a common data store (Stock Database)
containing the item descriptions and their availability. The complete Web shop is hosted
on a local data centre, belonging to the shop owner. The Web shop, however, experi-
ences very high workloads during specific times of the year, for example, when Christ-
mas approaches. The shop owner therefore decides to use elastic Cloud resources to
cope with such alternating workloads.

Consulting online resources, he decides to completely outsource his data store and
shop interface to the Cloud, where he can use the elasticity and scalability offered by it.
He decides however not to outsource the management interface and continues hosting
it on premises. The new architecture of the Web shop is shown in Fig. 1(b). While the
new Web shop fulfils the expectations in terms of computational resources in periods

CAP-Oriented Design for Cloud-Native Applications 217

(a) On premises (b) Off premises

Fig. 1. Web shop example

of increased activity, the owner is very quickly faced with a new problem: fulfilling
the orders depends on the link between the management interface and the data store
on the Cloud. Frequent network failures in this link force the stock managers to wait
before processing an order, essentially creating a bottleneck in the application. In the
following sections we are going to discuss how the shop owner (or more specifically,
the application designer on his behalf) would have been able to foresee this problem
before actually implementing the application.

3 CAP-Oriented Design

3.1 Design Decisions and CAP Properties

Since 2000 when Brewer posed his conjecture and until today, a number of works have
appeared in the literature discussing the implications of the CAP theorem in system
design, see for example [7], [8], [9], [10]. These discussions however stay on the level
of particular cases and best practices and do not identify or organize the underlying
principles of systems design for the Cloud. For purposes of visualization, it is more
appropriate to think of the CAP properties positioned along the edges of a tetrahedron,
as shown in Fig. 2, with minimum values for these properties in the intersection of the
axes (marked with 0 in Fig. 2). CAP properties of different systems are positioned along
the axes and form triangular areas that cut through this tetrahedron.

The strict interpretation of Brewer’s theorem would position any system on one of
the sides of the tetrahedron. In practice however, system designers and developers trade
some degree of, e.g., consistency for availability and network partitioning. Proposed
solutions like the one discussed in [11], where all three properties of CAP can be satis-
fied (not, however, at the same time), confirm that there is actually space to outmaneu-
ver the constraints imposed by the CAP theorem with clever design. Systems like the
Amazon.com online store, for example, allow customers to buy items without ensuring
their physical availability at the time of purchasing. If, e.g., a copy of the requested
book is not currently available in stock then it can either be purchased transparently to
the customer through a third party, or the fulfillment of the order can be delayed until
it becomes available (or ultimately some kind of compensation can be offered). The
reasoning here is that customers should always be served, even in case of (internal to
the systems of Amazon.com) network failures and even inventory inconsistencies. The
consistency of the system will actually only be eventually ensured by a set of corrective

218 V. Andrikopoulos et al.

11

1

0

1
C

PA

Fig. 2. The CAP Properties of a Distributed System

actions [12]. Thus, in terms of Fig. 2, it can be said that the Amazon.com store is po-
sitioned closer to the A vertex. Other systems like for example online travel agencies,
trade availability for consistency and network partitioning tolerance by making sure that
no two customers book the same ticket, even in the presence of network failures. In this
manner they essentially position themselves closer to the C-P side of the tetrahedron.

Different system requirements therefore lead to vastly different system design solu-
tions, and different systems (in this case Cloud-native applications) end up in different
areas of the tetrahedron in Fig. 2. Identifying the key decisions and their underlying
principles, and connecting them with particular CAP properties is necessary for mak-
ing sure that a Cloud-native application design fits its desired characteristics. Position-
ing the application in the tetrahedron is however not trivial. As demonstrated in the
previous section, application design usually entails a series of architectural decisions,
with each one of them having potentially a different effect on the CAP properties of the
application. Furthermore, particular implementation decisions like, e.g., the choice of
platform for hosting an application have an indirect effect on other decisions like the
way the clients will access the application. Architectural decisions are therefore in a
feedback loop and their effect for the CAP properties can only be estimated by taking
into account their interplay dependencies.

3.2 Application Design Methodology

The CAP-oriented Cloud-native application design methodology presented here aims
to address the requirements discussed above. It comprises of 5+1 phases, illustrated in
Fig. 3 and presented in the following.

Identify CAP Requirements. The first phase requires of the application developer to
identify the envisioned CAP properties of the designed application. For example, in the
Web shop scenario discussed in the previous section, the migrated to the Cloud system
requirements effectively call for stronger consistency, with network partitioning toler-
ance as a secondary goal, and availability only third. Actually positioning the desired
outcome as a triangle in the tetrahedron of Fig. 2 provides the application designer with
a qualitative feel of the requirements that he is building towards.

CAP-Oriented Design for Cloud-Native Applications 219

Fig. 3. The CAP-oriented Cloud-native application design methodology

Capture Design Decisions. The second phase consists of recording the various decisions
made by the application designer. This involves in the case of the Web shop scenario, the
decision to use a public Cloud for hosting the application, the storage model chosen etc.
Capturing these decisions (and indeed facilitating the design of the application) is better
performed, as we will discuss in the following section, by means of a decision support
system like the one discussed in [13] (see related work section for further information).

Select *aaS Solutions. The third phase of the methodology complements the previ-
ous phase by translating the various abstract design decisions into concrete Software-,
Platform- or Infrastructure-as-a-Service (*aaS) solutions. For the Web shop, for exam-
ple, this may entail using the Amazon Web Services data storage solution. In principle,
design decisions like the data storage model to be followed should “drive” the *aaS so-
lution options. Choosing a particular solution however may influence previously taken
design decisions with respect to its CAP properties. This may require a revisit of the
previous phase, shown by the backward arrow in the loop of Fig. 3.

Estimate CAP Properties. During this phase, the CAP properties of the various solu-
tions are combined in order to provide an estimate of the overall CAP properties of
the designed application. It is relatively easy to assume a binary nature of the proper-
ties following the strict interpretation of the theorem. However, as discussed by Brewer
himself in [14], all properties are more continuous rather than binary. Different sub-
systems also exhibit different properties and they contribute in different ways to the
overall behavior of the system.

In order therefore to achieve an estimation of the CAP properties for the whole
application, the selected *aaS solutions must be already annotated with information
about their CAP properties. The annotation can be expressed as a triplet (c, a, p) with
c, a, p ∈ [−1, 1], where values closer to 1 signify a strong correlation with a property,
while values close to -1 show a strong negative correlation, meaning that they affect this
property of the application in a degrading manner. Estimating the properties of the sys-
tem in this case can be performed by aggregating the various values for each property,

220 V. Andrikopoulos et al.

and normalizing the result in the [−1, 1] range. The advantage of this approach is that
the result can be visualized in Fig. 2, which allows a designer to easily assess whether
the designed application satisfies the requirements identified in the first phase. More
sophisticated methods like log mining and stochastic methods can be used both for the
actual extraction of the CAP properties of each *aaS solution and for their combination
into one (c, a, p) triplet.

Update Design & Solutions. Based on whether the estimated CAP properties of the
application satisfy its defined CAP requirements, the designer can choose either to pro-
ceed with the Development, Deployment and Provisioning of the actual application (not
in the scope of this work), or re-enter the design cycle through the Update Design & So-
lutions phase. During this stage the designer attempts to identify and isolate the design
decisions and *aaS solutions that produced the undesired outcome. Since changing any
of them may have an impact on the overall design of the system, it is then required to
re-enter the design decision/*aaS solution loop before estimating again the (new) CAP
properties. This cycle may be repeated a number of times until a desired outcome is
achieved.

4 Architectural Decisions and Design Patterns

In the previous section we presented a CAP-oriented design methodology for Cloud-
native applications. The next step is to make this methodology concrete and demonstrate
how it can be instantiated into a set of methods and tools for application design. For
this purpose, in the following we focus on presenting the Cloud Pattern Framework
introduced in [6], as the enabler of our methodology.

4.1 Cloud Architecture Patterns

Architectural patterns are used in many computer science domains to capture good so-
lutions to reoccurring problems in an abstract common descriptive format, e.g., [15],
[16]. A catalogue of patterns may then be used to guide application develop-
ers during the implementation. In our previous work, we abstracted the architec-
tural principles of Cloud computing from existing Cloud applications and Cloud
offerings and compiled them into a pattern catalogue [17], available also online at
http://cloudcomputingpatterns.org/. In contrast to other pattern cata-
logues, we extend the use of the patterns to also describe the aspects of Cloud that
are not implemented by the developer. This is necessary since Cloud applications rely
heavily on runtime environments offered by Cloud providers. We describe the common
concepts and behaviour of the environments in the same pattern format to ease their
perception. This also allows the description of the environment in which a developer
may apply Cloud architectural patterns through their interrelation to other patterns.

An overview of the resulting Cloud pattern classes is given in Fig. 4. Cloud Types
& Service Models contain pattern-based descriptions of the Cloud environment. For
example, there is a pattern for public Clouds (accessible by everyone), private Clouds
(accessible within one company), community Clouds (accessible for a certain number

http://cloudcomputingpatterns.org/

CAP-Oriented Design for Cloud-Native Applications 221

Fig. 4. Pattern Classes

Table 1. Excerpt from the Decision Recommendation Table [6]

Public Cloud Private Cloud Community Cloud Hybrid Cloud

Cloud Component
Gateway

– – – +

Elastic Infrastructure + + + +

Low-available
Computer Node

+ ∅ + +

High-available
Computer Node

∅ + + ∅

Legend: +: strong relation –: exclusion ∅: no relation

of companies), and hybrid Clouds (a combination of at least two of the other types
of Clouds) [3]. The Cloud environment that is described by this pattern class con-
tains Cloud offerings providing computation, storage, and communication functionality.
These Cloud offering patterns abstract from the concrete products of Cloud providers;
for example, Amazon S3 or Windows Azure Storage are abstracted by the blob stor-
age pattern. Architecture patterns may then be connected with these offering patterns to
guide application developers when using these offerings.

4.2 Cloud Pattern Framework

To guide the application developer during the selection of applicable patterns for his
concrete use case and Cloud environments, in [6] we introduced the Cloud Pattern
Framework. In addition to the catalogue of patterns, a central component of the frame-
work is a Decision and Solution Capturing component, enabled by a Decision Rec-
ommendation Table which captures the relations between the different patterns. We
differentiate relations identifying the patterns to be (i) strongly related, (ii) mutually ex-
clusive, and (ii) unrelated. Using this table (an excerpt of which is depicted in Table 1),
an application developer iteratively selects patterns and receives recommendations for
other patterns that may be applicable as well. Possible conflicts in the pattern selection
can be identified through the evaluation of exclusion relations.

222 V. Andrikopoulos et al.

Fig. 5. CAP Extension of the Cloud Pattern Framework

For example, an application developer may start by selecting patterns that describe
the Cloud environment at hand for which the application is being developed. He selects
the hybrid Cloud pattern in the decision recommendation table, because the application
uses different Clouds for different application components. Based on this selection,
the Cloud Component Gateway pattern is recommended to the developer. This pattern
describes how application components may be made accessible in different Cloud en-
vironments in case of communication restrictions and has therefore a strong relation to
the hybrid Cloud pattern. Navigating through the table in a similar manner from more
higher-level to more low-level patterns (e.g., type of data storage or communication
mechanisms) provides the designer with a set of choices for *aaS Solutions that imple-
ment the particular pattern. Other non-functional patterns, like for example the ones we
discuss in [18] can also be used for this purpose.

At this point the designer can simply choose which solution to use for the applica-
tion design. The actual guidance through the recommendation table, and the recording
of the various decisions that were taken is performed by the Decision & Solution Cap-
turing module, shown in Fig. 5. The Cloud Pattern Framework therefore provides us
with a set of useful building blocks (pattern catalogue, recommendation table, decision
and solution capturing) for realizing the CAP-oriented application design methodology
described in the previous section — as far as the decision capturing and *aaS solution
selection phases of Fig. 3 are concerned. In the following we show how it can be aug-
mented with CAP information in order to realize the Estimate CAP Properties phase.

CAP-Oriented Design for Cloud-Native Applications 223

4.3 CAP-Oriented Cloud Pattern Framework

In order to be able to estimate the CAP properties of an application in design we ex-
tend the Cloud Pattern Framework in three ways, as shown in Fig. 5 using dashed
lines. More specifically, as a first step we annotate the *aaS Solutions contained in the
Cloud Pattern Catalog with CAP Annotations. These annotations are triplets (ci, ai, pi),
where ci, ai, pi ∈ [−1, 1], in the manner discussed in Section 3.2. Currently, the triplets
(ci, ai, pi) are calculated by aggregating the values provided by different Cloud appli-
cation developers by means of a questionnaire. The Amazon SimpleDB data storage
service, for example, implementing the NoSQL Storage pattern, comes with two modes
of operation: strict consistency (closer to traditional RDBMS) and eventual consistency.
In the former mode, it is annotated with the triplet (0.6, 0.25, 0.4), while in the latter
with (0.3, 0.75, 0.75). Similarly, providing a MySQL server as a Cloud offering (e.g.
being deployed inside a Windows VM in Windows Azure), and implementing the Rela-
tional Datastore pattern is annotated with (0.95, 0.4,−0.25) since it is only marginally
tolerant to network partitioning.

The actual values of the triplets are meant to provide a qualitative feeling of how
strongly positive or negative CAP behaviour is exhibited by the *aaS solution, and they
can only be interpreted in relation to each other. For example, the value cMySQL = 0.95
stands for a solution much more oriented towards consistency than, e.g.,
cSimpleDBEventual

= 0.3. While currently these values are only aggregations of the
opinions of a limited group of Cloud developers, in the future we plan to expose them
to the users of the implementation of our proposed approach, and allow for providing
their own perceived values. By these means we aim to be able to provide a more up-to-
date annotation set which is in a feedback loop with its consumers. In addition, we shall
be also able to allow designers to add annotations for systems that do not appear in the
Pattern Catalogue, provided that they are first related to an appropriate pattern.

An alternative, more objective, approach would be to categorize *aaS solutions into
property classes with fixed values for all solutions in the class. For purposes of avail-
ability for example, class 6 systems [19], meaning that they have 99% followed by four
or more decimal nines availability, could be assigned a = 1.0, class 5 a = 0.9 and so
on. Defining the values for the triplets in this case is reduced to creating the classifica-
tion, deciding on the fixed values for the classes, and assigning each system to a class
for each property. Both of the described approaches can also be combined, allowing to
better reflect the expert knowledge.

For the second part of extending the Cloud Pattern Framework we focus on the pro-
viding a CAP Estimator (Fig. 5) module. The estimator takes as input from the Decision
& Solution Capturing module the list of *aaS solutions already selected by the designer.
It then retrieves the appropriate CAP annotations for these solutions and calculates the
overall CAP triplet for the application:

(c, a, p)estimated = (fi≥1(ci), f
′
i≥1(ai), f

′′
i≥1(pi)). (1)

Different functions f, f ′, f ′′ can be applied for the (c, a, p)estimated resulting in dif-
ferent interpretations of the expected behavior of the system. For example, a pessimistic
approach would be to use fi≥1(ai) = mini≥1(ai), signifying that the overall availabil-
ity of the system is as good as its weakest link. More sophisticated functions can be used

224 V. Andrikopoulos et al.

11

1

0,5

0

0,5

1
C

PA

Fig. 6. Visualization of the CAP Estimation

for this purpose, with different weighting for components and network links between
them, for example. For purely illustrative purposes, in this work we use the average of
each of the properties, as follows:

(c, a, p)estimated =
1

n

n∑

i=1

(ci, ai, pi). (2)

For a Cloud application for example that comprises a MySQL server installed inside
a Windows VM on Azure (implementing the Relational Datastore pattern as we saw
above) with annotation (0.9, 0.7,−0.25) and a Management UI as a set of JSP pages
on a local JBoss server (implementing the Stateless Component pattern) annotated with
the triplet (0.5, 0.0, 0.75) the estimated CAP properties are

(c, a, p)MySQLAzure =
1

2
(0.9 + 0.5, 0.7 + 0.0, 0.75− 0.25) = (0.7, 0.35, 0.25).

The estimated CAP properties show a system with high consistency but low availability
and little tolerance in network partitioning (since it depends on the UI/Database link in
order to operate correctly).

The visualization of this result is done by the Visualizer module in Fig. 5. The
estimated CAP properties produced by the CAP Estimator are positioned as a trian-
gle inside the CAP tetrahedron of Fig. 6 (extending that of Fig. 2). In the case of
(c, a, p)MySQLAzure , the estimated CAP properties (illustrated by the dashed triangle)
shows a clear tendency to the C vertex of the tetrahedron, denoting, as discussed above,
strong consistency. The area bound by the lighter of the inner triangles in the centre
of Fig. 6 denotes that one (or more) CAP properties of the application have a negative
value.

Having extended the Cloud Pattern Framework to cater for the realization of the
proposed CAP-oriented application design methodology, in the following we are go-
ing to validate our proposal by means of a case study. For this purpose we revisit the
motivating scenario discussed in Section 2.

CAP-Oriented Design for Cloud-Native Applications 225

(a) Initial solution (b) Initial migration

(c) Migration with data replication

Fig. 7. Web shop case study

5 Case Study

Returning to the motivating example, the Web shop owner starts by annotating the cur-
rent architecture with pattern information to determine the current CAP behaviour as
depicted in Fig. 7(a). Both user interfaces are Stateless Components (JSP pages on a
JBoss server) relying on a Relational Datastore (MySQL on Linux), as external state.
The links between them are synchronous and represent data base queries and, therefore,
have no pattern annotated to them. From the *aaS annotations catalog, we already know
that (c, a, p)JSPJBoss = (0.5, 0.0, 0.75) and (c, a, p)MySQLLinux = (0.95, 0.4, 0.25).
Therefore:

(c, a, p)Initial =
1

3
(2× 0.5+ 0.95, 2× 0+ 0.4, 2× 0.75+ 0.25) = (0.65, 0.13, 0.58).

In a similar manner, and for the migration to the Cloud shown in Fig. 7(b), we can
see that (c, a, p)Migration = (0.68, 0.53,−0.14), since

(c, a, p)SQLAzure = (0.75, 0.9,−0.5), (c, a, p)ASPWebRole
= (0.5, 0.7,−0.3), and

(c, a, p)JDBC = (0.95, 0.5,−0.5).

226 V. Andrikopoulos et al.

11

1

0,5

0

0,5

1
C

PA

Local datacenter

Migration to Cloud

Migration with data
replication

Fig. 8. CAP Estimations for different Web shop Solutions

The estimated CAP properties of the application reflect the observed ones in practice:
much higher availability, roughly equivalent consistency, but very low partitioning tol-
erance (due to the stock management UI dependency on the availability of the commu-
nication link between the local data centre and the Cloud service). This result, and the
relationship between the two application designs, is better illustrated in Fig. 8 where
the exchange of network partitioning for availability is reflected by the positioning of
the respective triangles.

To ensure that the stock manager can work at all times, the shop owner decides to
use the best of both worlds by replicating the data required by the stock manager and
the customer as shown in Fig. 7(c). The information required by the Web shop com-
ponent is now contained in a separate catalogue component in the Cloud. The stock
management component still contains all information about the goods and their avail-
ability. Hourly however, the data are replicated from the stock database to the catalogue
database by a shell script and a cron job. This leads eventually to a consistency be-
tween the two data replicas as shown by the Eventual Consistency pattern annotated
to the link. By calculating in a similar manner as above the estimated CAP proper-
ties, and for (c, a, p)Script+Cron = (−0.5, 0.5, 0.95), we have (c, a, p)Replication =
(0.44, 0.5, 0.23).

This design solution therefore ensures that the availability is increased for both the
stock manager and the customer and enables a system that is sufficiently partitioning
tolerant by sacrificing a small amount of consistency: both the stock manager and the
customer may access the information in the application, regardless of the availability of
the communication link between the integrated runtime environments. The data consis-
tency is however reduced, resulting in the possible condition that customers may order
goods that are not available, because the actual product availability is only kept in the
stock database. Therefore, compensation may be required in some cases, but the overall
behaviour of the system is (probably) more profitable for the Web shops. Other Web
shops like Amazon.com handle item availability in the same fashion. In all cases how-
ever, it is possible for the application designer to estimate the CAP properties by using
the methodology and tools we discussed in the previous.

CAP-Oriented Design for Cloud-Native Applications 227

6 Related Work

Cloud application design (and engineering) is still a developing research topic, driven
mostly by the industry. Solution providers like Microsoft, Amazon and IBM have of-
fered best practices on using their solutions for developing Cloud applications, see for
example [2], [20], [21]. However, these are far from systematic software engineering
approaches and they do not explicitly consider CAP properties. In a similar approach
to ours, the work of [22] uses design patterns in Cloud application engineering. Their
focus is on Cloud transformation, i.e., migrating existing applications to the Cloud.

Patterns are commonly used to describe good solutions to re-occurring problems in
a common format to organize practical knowledge and ease perception. This concept
has been used originally to describe building and city architecture [23] and has since
been applied to a large variety of domains, such as learning [24] or business communi-
cations [25]. Regarding software architecture and runtime infrastructure, patterns have
been defined for object oriented programming [16] and messaging-based application
integrations [15]. Furthermore, different pattern catalogues capture good practices for
user interaction with information [26]. These patterns have also been considered dur-
ing the identification of Cloud computing patterns. Many of them were transformed or
applied to the area of Cloud computing.

Capturing design decisions in order to focus and verify the design process of systems
is also discussed in [13], where a formal model is presented for capturing and reusing
architectural decision knowledge. Furthermore, in [27], the authors present a pattern-
based approach for architectural decisions. Both approaches are conceptually close to
this work, but discuss service-oriented and software systems and as such they are not
directly applicable to Cloud-native applications. Further investigation on how they can
be reused for this purpose is however in our future goals.

7 Conclusions and Future Work

While the CAP theorem has serious implications for the design of distributed systems
(and therefore also of Cloud-native applications) there are few works discussing how
to design for particular CAP properties. For this purpose, in this work we presented an
approach for incorporating these properties into the design of Cloud-native applications.
More specifically, we introduced a CAP-oriented design methodology which connects
design decisions with existing Cloud solutions and provides the means to estimate the
CAP properties of an application. This methodology was then realized by using Cloud
patterns in order to capture the design decisions and a set of annotations on the various
*aaS solutions that realize these patterns. A visualization approach was also presented
that allows for better perception of the estimated CAP properties and their impact on
the application design. Finally, the proposed approach was validated by means of a case
study scenario.

In the future we plan to complete the annotation of the Cloud Pattern Catalog pre-
sented in [6] so that we can empirically validate our approach using different scenarios.
As part of this effort, we also plan to extend the *aaS solutions annotation procedure to
as large as possible group of Cloud experts and offer tooling support for our method-
ology as an application in the Cloud. In addition we also plan to investigate different

228 V. Andrikopoulos et al.

possible approaches in combining the CAP annotations, using for example weighted
sums and other statistical methods. The proposed approach is geared towards building
Cloud-native applications. The methodology discussed in Section 3, however, can be
easily adapted and applied to the case of Cloud-enabled applications [28], i.e., applica-
tions that are partially or completely migrated to the Cloud. Depending on the selection
of Cloud services to be used, and the envisioned topology of the migrated application,
systems with radically different CAP properties could emerge. Combining this option
with, for example, calculating the operational expenses of the migrated application in
the Cloud, could result in a decision support system that would allow application stake-
holders to figure out whether and how their application should be migrated to the Cloud.

Acknowledgements. The research leading to these results has partially received
funding from the 4CaaSt project (http://www.4caast.eu/) from the European
Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no.
258862.

References

1. Leymann, F., Fritsch, D.: Cloud Computing: The Next Revolution in IT. In: Proceedings of
the 52th Photogrammetric Week, pp. 3–12 (2009)

2. Varia, J.: Architecting for the Cloud: Best Practices. Amazon Web Services (2010),
http://media.amazonwebservices.com/AWS Cloud Best Practices.
pdf

3. Badger, M.L., Grance, T., Patt-Corner, R., Voas, J.M.: Cloud Computing Synopsis and Rec-
ommendations. NIST Special Publication 800-146 (2012), http://www.nist.gov/
manuscript-publication-search.cfm?pub id=911075

4. Brewer, E.A.: Towards Robust Distributed Systems. In: Proceedings of the Annual ACM
Symposium on Principles of Distributed Computing, vol. 19, pp. 7–10 (2000)

5. Gilbert, S., Lynch, N.: Brewer’s Conjecture and the Feasibility of Consistent, Available,
Partition-Tolerant Web Services. ACM SIGACT News 33(2), 51–59 (2002)

6. Fehling, C., Leymann, F., Retter, R., Schumm, D., Schupeck, W.: An Architectural Pattern
Language of Cloud-Based Applications. In: Proceedings of the Conference on Pattern Lan-
guages of Programs, PLoP (2011)

7. Hewlett-Packard Development: There is no Free Lunch With Distributed Data. HP
White Paper (2005), ftp://ftp.compaq.com/pub/products/storageworks/
whitepapers/5983-2544EN.pdf

8. Helland, P.: SOA and Newton’s Universe. MSDN Blogs (2207),
http://blogs.msdn.com/b/pathelland/archive/2007/05/20/
soa-and-newton-s-universe.aspx

9. Kossmann, D.: How new is the Cloud? In: IEEE Proceedings of ICDE 2010, p. 3 (2010)
10. Mietzner, R., Fehling, C., Karastoyanova, D., Leymann, F.: Combining Horizontal and Ver-

tical Composition of Services. In: IEEE Proceedings of SOCA 2010, pp. 1–8 (2010)
11. Pardon, G.: A CAP Solution (Proving Brewer Wrong). Personal Blog (2008),

http://guysblogspot.blogspot.com/2008/09/cap-solution-proving
-brewer-wrong.html

12. Vogels, W.: Eventually Consistent. Communications of the ACM 52(1), 40–44 (2009)
13. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing Architectural

Decision Models with Dependency Relations, Integrity Constraints, and Production Rules.
Journal of Systems and Software 82(8), 1249–1267 (2009)

http://www.4caast.eu/
http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf
http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=911075
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=911075
ftp://ftp.compaq.com/pub/products/storageworks/whitepapers/5983-2544EN.pdf
ftp://ftp.compaq.com/pub/products/storageworks/whitepapers/5983-2544EN.pdf
http://blogs.msdn.com/b/pathelland/archive/2007/05/20/soa-and-newton-s-universe.aspx
http://blogs.msdn.com/b/pathelland/archive/2007/05/20/soa-and-newton-s-universe.aspx
http://guysblogspot.blogspot.com/2008/09/cap-solution-proving-brewer-wrong.html
http://guysblogspot.blogspot.com/2008/09/cap-solution-proving-brewer-wrong.html

CAP-Oriented Design for Cloud-Native Applications 229

14. Brewer, E.: CAP Twelve Years Later: How the “Rules” Have Changed. Computer 45(2),
23–29 (2012)

15. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Longman (1994)

17. Fehling, C., Leymann, F., Mietzner, R., Schupeck, W.: A Collection of Patterns for Cloud
Types, Cloud Service Models, and Cloud-Based Application Architectures. Technical Report
(2011)

18. Strauch, S., Andrikopoulos, V., Breitenbücher, U., Kopp, O., Frank, L.: Non-Functional Data
Layer Patterns for Cloud Applications. In: Proceedings of CloudCom 2012, pp. 601–605.
IEEE Computer Society Press (2012)

19. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice Hall PTR
(2000)

20. Erl, T., Kurtagic, A., Wilhelmsen, H.: Designing Services for Windows Azure.
MSDN Magazine (2010), http://msdn.microsoft.com/en-us/magazine/
ee335719.aspx

21. Lau, C., Birsan, V.: Best Practices to Architect Applications in the IBM Cloud.
IBM DeveloperWorks (2011), http://www.ibm.com/developerworks/cloud/
library/cl-cloudapppractices/index.html

22. Chee, Y.M., Zhou, N., Meng, F.J., Bagheri, S., Zhong, P.: A Pattern-Based Approach to Cloud
Transformation. In: IEEE Proceedings of CLOUD 2011, pp. 388–395 (2011)

23. Alexander, C., et al.: A Pattern Language. Towns, Buildings, Construction. Oxford University
Press (1977)

24. Iba, T., Miyake, T., Naruse, M., Yotsumoto, N.: Learning Patterns: A Pattern Language for
Active Learners. In: Conference on Pattern Languages of Programs, PLoP (2009)

25. Manns, M.L., Rising, L.: Fearless Change: Patterns for Introducing new Ideas. Addison-
Wesley, Boston (2005)

26. Yahoo! Inc.: Yahoo! Design Pattern Library. Online Resource (2011),
http://developer.yahoo.com/ypatterns/

27. Harrison, N.B., Avgeriou, P., Zdun, U.: Using Patterns to Capture Architectural Decisions.
IEEE Software 24(4), 38–45 (2007)

28. Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.: How to Adapt Applications for the
Cloud Environment. Springer Computing 95(6), 493–535 (2013),
http://dx.doi.org/10.1007/s00607-012-0248-2

http://msdn.microsoft.com/en-us/magazine/ee335719.aspx
http://msdn.microsoft.com/en-us/magazine/ee335719.aspx
http://www.ibm.com/developerworks/cloud/library/cl-cloudapppractices/index.html
http://www.ibm.com/developerworks/cloud/library/cl-cloudapppractices/index.html
http://developer.yahoo.com/ypatterns/
http://dx.doi.org/10.1007/s00607-012-0248-2

SLA-Oriented Security Provisioning
for Cloud Computing

Massimo Ficco and Massimiliano Rak

Dipartimento di Ingegneria Industriale e dell’Informazione,
Second University of Naples (SUN), Via Roma 29, 81031 Aversa, Italy

{massimo.ficco,massimiliano.rak}@unina2.it

Abstract. Cloud Computing represents both a technology for using distributed
computing infrastructures in a more efficient way, and a business model for rent-
ing computing services and resources. It is an opportunity for customers to reduce
costs and increase efficiency. Moreover, it gives to small and medium enterprises
the possibility of using services and technologies that were prerogative of large
ones, by paying only for the used resources and avoiding unnecessary investment.
The possibility of dynamically acquire and use resources and services on the base
of a pay-by-use model, implies an incredible flexibility in terms of management,
which is otherwise often hard to address. In this paper, we propose an approach
to to build up SLA-oriented Cloud applications, which enable a Cloud provider
to offer service customized on the customer security needing. In particular, by
using a Cloud-oriented API derived from the mOSAIC project, the developer
can implement security features that can be offered by the Cloud provider within
their Service Level Agreement. In particular, we focus on providing an intrusion
tolerance service to grant an application service availability even when the host
system is under attack.

Keywords: Cloud Computing, SLA, Security, Intrusion Tolerance.

1 Introduction

Cloud Computing is an emerging paradigm that allows customers to obtain easily ser-
vices and resources (e.g., networks, virtual machines, storage, applications), according
to an on-demand and pay-by-use business model. The current Cloud providers include
Quality of Service (QoS) guarantees in their Service Level Agreement (SLA) propos-
als [1]. An SLA is an agreement between a Cloud provider and a customer. Specifi-
cally, from Cloud consumer point of view, a SLA is a contract that grants the customer
about what he/she will effectively obtain from the service. From Cloud provider point
of view, SLA is a way to have a clear and formal definition of the requirements that
the delivered service has to respect. In general, providers offer guarantees in terms of
service availability and performance during a time period of months or a year. The pro-
visioning contracts regulate the cost that customers have to pay for provided services
and resources. On the other hand, the Cloud service provider must pay a penalty if the
customer requirements are not satisfied. For example, the Cloud provider could be li-
able to pay a penalty for service requests that are rejected due to the unavailability of

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 230–244, 2013.
c© Springer International Publishing Switzerland 2013

SLA-Oriented Security Provisioning for Cloud Computing 231

the resources. In order to support this model, the Cloud infrastructure has to continually
adapt to changing of customer demands and operation conditions. For example, in order
to prevent service availability violations may be required additional standby resources
to handle a given number of failure, whereas to prevent performance violations may be
required to scale up or move a virtual machine (VM) to another physical machine (if the
current machine is overloaded). Therefore, the on-demand characteristic is one aspect
that complicates the QoS provisioning and the SLA management in the Cloud Com-
puting paradigm. In particular, a side effect of such a model is that, it is prone to cyber
attacks, which aim at reducing the services availability and performance by exhausting
the resources of the service’s host system (including memory, processing resources, or
network bandwidth) [2].

In this paper, we show how it is possible, using a Cloud-oriented API derived from
the mOSAIC project [3,4], to build up a SLA-oriented Cloud application, which enables
an IaaS Cloud provider to offer security services customized on customer needing. The
objective is to offer, in a transparent way, a service that is able to provide the typical IaaS
services (mainly VMs delivery) enriching them with ad-hoc solutions for protecting the
delivered resources against a set of security attacks. The goal is to enable the Cloud
customer to negotiate with the provider the level of security offered. The customer pays
for the additional security service, but he/she is granted that the service is tolerant to a
given set of Denial of Service (DoS) attacks (i.e., continues to work even under attack)
and the additional load generated is not charged.

The remainder of this paper is organized as follows: Sec. 2 presents the proposed
approach. Sec. 3 presents an overview of the intrusion tolerance technologies, which
represent a basis for the description of the proposed solution described in Sec. 4. Sec. 5
describes the technology we adopted in order to build up the solution, while Sec. 6
describes our Cloud application that enables the SLA negotiation and enforcement pro-
visioning. Sec. 7 shows the final integrated solution and the offered SLA. Sec. 8 sum-
marizes the related work and Sec. 9 concludes the paper.

2 An SLA-Oriented Security Perspective

The objective of this paper is the design and implementation of a system able to offer
Intrusion Tolerance (IT) solutions as a Service. The key idea is that the approach of
offering security solutions as a Service can be better achieved following an SLA-based
approach: customer invokes the services always in the same way, but, due to the inte-
gration of the system together with an SLA-based application, the offered service can
be enriched with security mechanisms.

In order to better illustrate the problem, Fig. 1 shows the approach we propose: the
Cloud provider offers typical IaaS functionalities. In the presented example, the Cloud
provider offers a set of pre-configured Web Server images, which can be acquired and
configured by the customer though a well known interface. Thanks to the adoption of the
mOSAIC Framework (see Sec. 5), the provider is able to offer more complex services
on the top of the provided VMs. In particular, he/she offers a SLA-based application that
enables the customer to negotiate, through the WS-Agreement standard description, the
quality of services delivered. In our case study, we will show that the delivered VM

232 M. Ficco and M. Rak

Fig. 1. Intrusion Tolerance as a Service with SLA-based approach

will be enriched, after the negotiation, with mechanisms that grant the customer against
some of possible DoS attacks. As shown in Fig. 1, the customer invokes exactly the
same service, but due to the SLA negotiation process, instead of the binding to an
unprotected Web Server, he will receive the binding to a VM that is enriched with
IT features. Service invocation does not change from final user (obtaining a standard
machine or a protected one is completely transparent). Moreover, through the SLA-
based application, it is possible to help the Cloud provider and customer to agree on the
security granted, identifying the features that should be offered.

3 Intrusion Tolerance Techniques

Intrusion Tolerance is the ability of a system to continue providing (at most degraded)
adequate service, despite the presence of deliberate attacks against the system, by both
insiders and outsiders. In order to enforce the IT, several techniques can be adopted.

Replication is the technique most commonly used to perform IT. It consists to use
more replicas of the same component and use specific voting algorithms, which are
used to resolve any difference in the redundant responses, and to arrive at a consensus
result based on the responses of perceived non-compromised components in the sys-
tem. It has two complementary goals: masking of intrusions, thus tolerating them, and
providing integrity of the data. Examples of algorithms are the Byzantine replication
algorithms [5].

Using a rejuvenation approach, critical components are periodically rejuvenated to
remove the effects of malicious and intelligent attackers that find ways to compromise
them. An example of rejuvenation procedure could aim at loading a clean version of the
application or change the cryptographic keys [6].

Redundancy is an approach different from replication, which is just one type of re-
dundancy. Replicated components are pure replicas of each other. If the attacker has

SLA-Oriented Security Provisioning for Cloud Computing 233

found a technique to subvert one component and all are pure replicas, it is likely that all
components are likewise vulnerable. To combat this, another common technique used
is ‘diversity’. Diversity is the property such that the redundant components should be
substantially different in one or more aspects, from hardware diversity and operating
system diversity, to software implementation diversity. Therefore, through the use of
diversity, the probability of a replica being compromised is independent of the occur-
rence of intrusion in other replicas [7].

Indirection allows designers to insert protection barriers and fault logic between
client and server/components that provide the service. Since the indirection is hidden
outside of the black box system, the clients see only what looks like a COTS server.
There are at least four main types of indirection used by IT systems: proxies, wrappers,
virtualization, and sandboxes.

Several previous techniques, commonly named proactive, aim at preventing system
components being compromised. Reactive techniques aim at mitigating and reacting
to intrusion. For example, they aim at minimizing stolen resources and disable inap-
propriate information flows (e.g., through roll back and roll forward) to react/mitigate
intrusion impact on the system. Moreover, Intrusion detection and correlation mecha-
nisms can be used to detect intrusion and identify the specific recovery action [8,9,10].
For example, in replication, it could force the recovery of a replica that is detected or
suspected of being compromised.

Reconfiguration can be proactive or reactive and can help in prevention, elimina-
tion, and tolerance. A wide variety of reconfiguration strategies are employed [11]. A
challenge in devising the reconfiguration mechanisms is to protect them from being
(mis)used by the attacker. It is important that the reconfiguration process be not very
predictable by the attacker. Therefore, a major challenge is to make them resilient to
oscillations due to transient and malicious effects that may lead to reconfigurations that
drive the system to an inconsistent state.

4 An Intrusion Tolerant Solution

As case study, in this paper we adopt an Intrusion Tolerant reactive technique. The pro-
posed IT architecture is composed of two subsystems, with distinct properties (Fig. 2).
The first subsystem is the Application VM that hosts the application to protect, whereas
the second subsystem, named ITmOS, is the VM that hosts the IT mechanisms. The
two subsystems are connected through a secure channel isolated from other connec-
tions. The interaction of the application with the outside world is done only through
the network, using a Proxy (based on the Squid Web proxy [12]) hosted on the ITmOS
VM. A VM Monitor monitors the Application VM. It is a Java-based component based
on Ganglia-Gmond, which is a real-time monitoring system [13]. It is used to collect
system resources consumption (including CPU, memory, disk). An Intrusion Detector
module collects data from the Proxy and alerts the Decision Engine component whether
an anomalous behavior is observed. The Decision Engine is a centralized engine, which
receives and correlates security data. It determines whether the monitored data are ma-
licious behaviors, as well as estimates the effects on the monitored subsystem. It is
responsible to identify the best reaction to take, in order to mitigate the attack effects

234 M. Ficco and M. Rak

Fig. 2. Intrusion tolerant architecture

on the target application. In particular, it analyzes the received data and performs the
reactions by the Proxy in response to the attack, filtering messages to the guest sys-
tem as needed. The Intrusion Detector interacts with the VM Monitor through a secure
communication channel.

4.1 An example of Intrusion Tolerance Approach for Denial of Service Attacks
to Web Server

In our previous work [14], we present an IT approach for Denial of Service attacks to
Web Server, which leverages an XML vulnerability. We focus on the Deeply-Nested
XML DoS attack (X-DoS), which exhausts the computational resources of the target
system, by forcing the XML parser within the server application to process numerous
deeply-nested tags. In particular, the attack consists of inserting of a large number of
nested XML tags in the Web messages.

Fig. 3 shows the CPU consumption depending on the number of nested XML tags
and the frequency with which the malicious Web messages are injected. We perform
different attack scenarios. Each scenario consists of a sequence of messages injected
with a fixed frequency and a fixed number of nested tags. An attack scenario takes
about 30 seconds. In particular, Fig. 3 represents the average value of CPU for the
different scenarios, which are performed varying the number of tags nested to different
depths (taking fixed the frequency). The experiment shows that it is sufficient to inject
messages with about 35 nested tags every 100 ms, to make unavailable the Web service
(i.e., to exhaust the computational resources).

The implemented solution allows to trigger a specific reaction to mitigate the effects
of the X-DOS attack. In particular, in order to detect the attack, an anomaly-based mon-
itoring approach is adopted that assigns a weight to the detected anomalous events. The
weight reflects the anomaly level with regard to an established profile. If this weight does
not exceed a threshold estimated during a training phase, the event is discarded (i.e., it
is considered as a normal behavior), otherwise an alarm is triggered and a reaction is
activated.

In the proposed architecture (Fig. 2), the Decision Engine correlates the events gen-
erated by both the VM Monitor hosted on the Application VM and the Intrusion De-
tector. As presented in [14], on the occurrence of an excessive CPU consumption, if an

SLA-Oriented Security Provisioning for Cloud Computing 235

Fig. 3. CPU consumption with different message frequencies

anomalous number of nested XML tags with respect to a normal profile is monitored,
a reaction in triggered. In particular, the Decision Engine alerts the Proxy, which filters
each Web request that contains a number of nested tags greater than a fixed thresh-
old. The purpose of this action is to reduce the CPU load on the Application VM, thus
reducing the period in which the Web Server is unavailable.

In order to evaluate the proposed solution, a workload based on TPC Benchmark W
(TPC-W) is adopted [15]. It is a transactional Web benchmark. The workload is per-
formed in a controlled environment that simulates the activities of a business oriented
transactional Web server. It simulates the execution of multiple transaction types that
span a breadth of complexity. Multiple Web interactions are used to simulate the activ-
ity of a retail store, and each interaction is subjects to a response time constraint. The
performance metric reported by TPC-W is the number of Web interactions processed
per second (WIPS). It is used to simulated stress load and to assess the effectiveness of
the proposed solution by the WIPS measurements.

An example of recovery effect is shown in Fig. 4. It represents the WIPS and CPU
variations with respect to the time, during an interval time of tree minutes. The exper-
iment consists of tree temporal windows. During the first two windows, the Decision
Engine is disabled. In particular, the first 60 seconds show the values of the WIPS and
the CPU load in absence of the attack. The second 60 seconds show the attack effects.
We injected malicious messages with 3000 nested tags every 200 ms. During this pe-
riod, the CPU load is about 100% and the number of TPC-W interactions processed is
very low. Finally, during the last 60 seconds, the Decision Engine is enabled. When the
Decision Engine detects the condition of a reaction (i.e., the attack is in progress and
the CPU consumption exceed the 90%), it alerts the Proxy, which filters all the suspi-
cious messages. The reaction is applied until the CPU load falls below a fixed value.

5 mOSAIC: Development of Distributed Cloud Applications

mOSAIC aims at offering a simple way to develop Cloud application. The target user
for the mOSAIC solution is a developer (mOSAIC User). In mOSAIC a Cloud appli-
cation is modeled as a collection of components that are able to communicate each

236 M. Ficco and M. Rak

Fig. 4. WIPS evaluation during a intrusion recovery process.

other and consume Cloud resources (i.e., resources offered as a service from a Cloud
provider).

The mOSAIC solution is a framework composed of three independent components:
Software Platform, Cloud Agency and Semantic Engine. The Software Platform en-
ables the execution of application developed by using the mOSAIC API; the Cloud
Agency acts as a provisioning system, brokering resources from a federation of Cloud
providers; the Semantic Engine offers solution for reasoning on the resources and ap-
plication needing. For the needing of this paper, we needed of concepts related to the
Platform and the Cloud Agency, while the Semantic Engine will not be focused in
this context. Moreover, in the following mOSAIC-based scenario, we consider that: the
provider uses a set of its resources for the management of the Cloud application and
hosting the mOSAIC Platform. On the top of the Platform, the provider runs its own
mOSAIC Application that directly interacts with the IaaS service offered to grant added
value services.

5.1 Programming with mOSAIC

A mOSAIC Application is defined as a collection of interconnected mOSAIC Com-
ponents. Such Components may be offered by the mOSAIC Platform (i) as COTS
(Commercial off-the Shelf) solutions, that are Commercial Off-The-Shelf components
based on non-mOSAIC technologies, and adapted in order to inter-operate with the
mOSAIC applications, (ii) as Core Components, i.e., tools offered by mOSAIC Plat-
form in order to perform predefined operations, or (iii) new components developed
by using mOSAIC API. In last case, a component is a Cloudlet running in a Cloudlet
Container. The mOSAIC Components run on dedicated VMs, named mOS (mOSAIC
Operating System), which is based on a Linux distribution. The mOS is enriched with
the Platform Manager, which enables to manage a set of VMs hosting the mOS, as a
virtual cluster on which the mOSAIC Components are independently managed. It is

SLA-Oriented Security Provisioning for Cloud Computing 237

possible to increase and decrease the number of VMs dedicated to the mOSAIC Ap-
plication, which will scale in and out automatically. The mOSAIC Components can be
interconnected through communication resources, queues, socket, Web services, etc. In
particular, the mOSAIC Platform offers some queuing system (rabbitmq and zeroMQ)
as COTS components, as well as offers some Core Components in order to help Cloud
application to offer their operations as a service, like an HTTP gateway, which accepts
HTTP requests and forward them on the application queues.

The Cloud application is described as a whole in a file named Application Descriptor,
which lists all the components and the Cloud resources needed to enable their commu-
nications. A mOSAIC developer has the role of both develop new components and write
the Application Descriptors. The mOSAIC API, actually based on Java and Phiton, en-
ables the development of new components (in the form of Cloudlets), which self-scale
on the described Platform and use every kind of Cloud resources, such as queues, NO-
SQL storage system (like KV store and columnar databases), independently from the
technologies and API they adopt, through a wrapping system.

5.2 mOSAIC Offering for SLA-Based Applications

mOSAIC offers a set of features dedicated to SLA management [16] . In previous
works [17,21], we proposed a case study in which we presented an application that
offers security access configurations to a GRID environment in terms of SLA. The
components offered in the SLA architecture should help the application developer to
implement an SLA-based architecture. Figure 5 summarizes the global architecture of-
fered in mOSAIC, showing the main modules and their respective roles:

– SLA Negotiation: This module contains all the Cloudlets and the components that
manage the SLA documents and their formal management, i.e., negotiation proto-
cols, auditing, and so on.

– SLA Monitoring: This module contains all the Cloudlets and the components needed
to detect the warning conditions and generates alerts about the difficulty to fulfill
the agreements. It should address both resources and applications monitoring. It is
connected with the Cloud Agency.

– SLA Enforcement: This module includes all the Cloudlets and components needed
to manage the elasticity of the application, and modules that are in charge of making
decisions in order to grant the respect of the acquired needed to fulfill the agree-
ments.

In this context, we are interested mainly in the SLA Negotiation module, which offers
the functionality to automatize the SLA negotiation process.

6 SLA-Based Cloud Application for IT Management

In our case study, the provider aims at developing a Cloud application that offers SLA
negotiation features, following the SLA model proposed in mOSAIC, in order to offer
enriched services to Cloud customers. The negotiation has the effect of enabling the
adopted IT techniques. Specifically, the developed SLA-based application offers mainly
two different use cases:

238 M. Ficco and M. Rak

Fig. 5. Intrusion tolerant architecture

– SLA Negotiation: that enables a customer to negotiate a SLA, identifying the secu-
rity of the services offered. Through the negotiation process, it is possible to enforce
the security mechanisms described in Sec. 4.

– VM Delivery: that just delivers a VM to the customer. In this case, the application
just forwards the request to the underlying IaaS infrastructure in order to offer the
service to the Final User. Note that, depending on the SLA negotiated, the applica-
tion may start several VMs for the same request done from the customer.

The SLA negotiation follows the SLA model described in Sec. 5, while the VM
delivery is done forwarding the requests to the underlying IaaS provider in the case of
non-protected requests, instead performing additional operation when an IT system is
required.

The IaaS offers its services as usual to its own customers (the upper requests), but
it is possible to offer the same services even through the newly developed mOSAIC
Application. In the latter case, the requests may have or not the same format of the
underlying provider. In the example, the requests are done with a very simple Restful
interfaces through a JSON request attached to an HTTP POST invocation. When a
request is received, it is interpreted by the mOSAIC Application that performs the local
requests in order to start all the VMs needed (i.e., the standard Web Server or the
solution presented in Sec. 4, which includes both the Web Server and the IT Proxy
connected through a dedicated virtual network).

The mOSAIC Application is fully described in Fig. 6, where all the components
involved in the SLA negotiation and SLA enforcement are proposed. In particular, Fig. 6
shows the main components of the mOSAIC Application, following the architecture
proposed in [4]. Our mOSAIC Application consists of four components:

– SLAgw that receives the WS-Agreement, stores it in the local storage (signing it in
state pending), and forwards it to the decision Cloudlet;

– SecDecision that evaluates if the SLA is acceptable. It has the role of updating
the SLA status (as an example, signing it as accepted or refused) and in case it is
accepted, it forwards a request to SecConfigurer;

– SecConfigurer updates a KV store in which there is signed the security level agreed
for each customer. In this paper, we just assume hat we offer two security level for

SLA-Oriented Security Provisioning for Cloud Computing 239

Fig. 6. SLA-based mOSAIC Application

a Web Server: unprotected and protected. However, it is possible to enrich the offer
with a lot of different solutions

– Request Interpreter receives the customer requests, evaluates the requests, extract-
ing the service requested, checks the KV store in order to identify the SLA agreed,
and then performs the request to the local IaaS provider. In case of unprotected
request, just starts the Application VM, while in case of protected Web Servers,
it starts both the Application VM and then the ITmOS VM, writing in the proxy
configuration file the right configuration information. In both cases, it returns the
IP addresses of the provided VMs.

The SLAgw is the main component dedicated to SLA management, which is offered
by the mOSAIC framework as a standalone component. SLAgw component offers a
simple way to interact with the customers in a SLA-based manner: they will negotiate
the agreement. The SLAgw sends out a message to the mOSAIC Application each time
a new agreement request take place. At the state of art, we support the asynchronous
WS-Agreement negotiation (i.e., the customers agreement requests always receive a
wait reply, then it is up to the customer to query for the agreement status and to obtain
an accept or a refuse). In future work, we will support even the synchronous negotiations
and more evolved protocols. The SLAgw component does not assume decisions about
the submitted SLA, it just forwards them to a mOSAIC Application and stores the SLA
in a shared KV store.

7 Offering Intrusion Tolerance through SLA

The above proposed application enables to negotiate with the customer application the
SLA, described in WS-Agreement, in order to adapt the requests for delivering VMs
from the underlying IaaS provider. In this section, we focus on how such requests can
be described in Ws-Agreement and how to enforce the SLA in a VM request invocation.

It is important to point out that a SLA implies that the offering are granted, and if
not respected some penalties are applied to the peer of the agreement. Following the
above approach, we need to understand what the proposed IT system is able to grant.

240 M. Ficco and M. Rak

Moreover, the solution agreed should be verifiable from the customer, in order to check
the effective respect of the SLA. The adoption of SLA in the offered services has the
side effect of imposing to Cloud provider to clear identify the advantages offered in a
measured way. Identifying the real grants offered in the context of security is a very
hard task, being at the state of art very few available solutions able to quantitatively
measure the security level of a system in an incontestable way.

The approach we propose to such a problem consists in identifying the set of security
threats we are able to face and try to model with quantitative parameters such threats. As
an example, we can model a flooding attack as a possible threat and model it in terms
of the number of flooding messages received by the system. Our SLA will be built
starting from the list of all the threats we are able to face, and the offered security level
will be based on the quantitative parameters we have identified to model the security
threat. Such an approach can be adopted in each case in which the security threats can
be modeled in terms of an attack, and it is possible to build up a quantitative model of
such an attack.

For simplicity, in the following we will focus on a single attack against which our
IT system work, in order to clarify the approach with a simple example. Having the
proxy faces a larger set of attacks, the real SLA will be much more complex than the
one proposed here. Specifically, the attack we focus, as described in Sec. 4, is an X-
DoS attack. This attack founds on the simple idea that XML schema validator will be
heavily CPU intensive when it has to check a (valid) XML document with a very high
number of nested tags. When an attack takes place, the CPU consumption increases
even if only few malicious messages are processed by the Web Server. Our solution
detects the attack using the following set of information: < MeanNumberoftags >
,< MeanCPUUsage >,< T imeRange >. The detection takes place on interval of
duration time < TimeRange >. In such time interval we evaluate if both mean CPU
consumption and mean number of tags are over fixed thresholds.

Such a model to detect the attack, that we call SimpleThreshold, can be model by us-
ing the following simple parameters: CPU Threshold, TAG Threshold, and Time Range.

Our IT model is able to grant that the Web Server is protected against a Deeply-
Nested XML DoS attacks, detectable with a SimpleThreshold technique with param-
eters < CPUThreshold >,< TAGThreshold >,< T imeRange >. Our solution
grants that if such an attack takes place, there will be no additional CPU usage on the
Web Server. The user knows exactly the conditions under which its own Web Server is
protected and he is able to adapt the IT Proxy parameters.

It is important to point out that, such an SLA is correct, but very hard to manage
for customers, therefore, the target users are the Web Server administrator with great
experience. In future work, we will offer tools that help in managing such information
in a more easy way, using semantic technologies.

In order to offer the SLA in a formal way, we translate such information in a WS-
Agreement template, that can be filled by users in order to negotiate the parameters.
We defined a simple schema for management of our security tags, which enable to list
the attacks against which the system is protected. The code represented in Listing 1.1
shows the example of guarantee terms for the Web service (that is described in an OCCI
compliant way).

SLA-Oriented Security Provisioning for Cloud Computing 241

Listing 1.1. X-Dos Guarantee term for WS-Agreement.

<ws:ServiceDescriptionTerm ws:Name="WEB SERVER REQUEST"
ws:ServiceName="SET VARIABLE">

<Compute>
<architecture>x86</architecture>
<cpuCores>4</cpuCores>

[...]
<title>WebServer</title>

</Compute>
</ws:ServiceDescriptionTerm>

[...]
<wsag:GuaranteeTerm wsag:Name="ITS" wsag:ServiceScope="WEB

SERVER REQUEST" Obligated:"provider">
<wsag:ServiceLevelObjectives>
<wsag:KPITarget>

<wsag:KPIName>XML DoS</wsag:KPIName>
<wsag:Target>

<itsag:Attack name="Nested TAG" />
<itasg:Detection name="SimpleThreshold">
<itsag:Parameter name="CPUThreshold" value="90"

unit="percentage"/>
<itsag:Parameter name="TAGThreshold" value="20"

unit="number"/>
<itsag:Parameter name="TimeRange" value="5" unit=

"minutes"/>
</itasg:Detection>
<itsag:Reaction time="120" unit="minutes"/>
<itsag:Description link="http://www.mosaic-Cloud.eu

/ITS/Attacks/NestedTag" />
</wsag:Target>

</wsag:KPITarget>
</wsag:ServiceLevelObjectives>

</wsag:GuaranteeTerm>

Our solution enables description of attacks, following the proposed approach just in
terms of few parameters:

– Attack just contains the name of the attack.
– Description has several attributes, including the used language, the description of

the attack and of the possible (supported) detection systems.
– Detection has an attribute that identifies the supported detection method and con-

tains the list of parameters needed to evaluate the detection model.
– Reaction has an attribute, that identifies the time needed to react, which means that

the system may have some side effects of the attacks for that interval of time.

Such a guarantee terms grant the customer that each attack listed as KPIName
and detectable with the listed detection methods will not affect the performances of the
target system. It is responsibility of the IaaS provider identify the penalties to be paid
in the case in which the condition is not respected.

242 M. Ficco and M. Rak

8 Related Work

To the best of our knowledge not much work has been done in the area of configuring
security requirements specified through WS-Agreement documents. Karjoth et al. [18]
introduce the concept of Service-Oriented Assurance (SOAS). SOAS is a new paradigm
that defines the security as an integral part of service-oriented architectures. It provides
a framework in which the providers define their offered security assurances, as well
as assess the security of their sub-services. SOAS enables discovery of sub-services
with the right level of security. Moreover, SOAS adds security providing assurances (an
assurance is a statement about the properties of a component or service) as part of the
SLA negotiation process. Smith et al. [19] present a WS-Agreement approach for a fine
grained security configuration mechanism to allow an optimization of the application
performance based on specific security requirements. They present an approach to op-
timize Grid application performance by tuning service and job security settings based
on customer supplied WS-Agreement specification. The WS-Agreement describes se-
curity requirements and capabilities in addition to the traditional WS-Negotiation at-
tributes, such as computational needs, quality-of-service (QoS), and pricing. Brandic
et al. [20] present advanced QoS methods for meta-negotiations and SLA-mappings in
Grid workflows. They approach the gap between existing QoS methods and Grid work-
flows by proposing an architecture for Grid workflow management with components
for meta-negotiations and SLA-mappings. Meta-negotiations are defined by means of
a document, where each participant may express, for example, the pre-requisites to be
satisfied for a negotiation, the supported negotiation protocols and document languages
for the specification of SLAs. In the pre-requisites there is the element < security >
that specifies the authentication and authorization mechanisms that the party wants to
apply before starting the negotiation. With SLA-mappings, they eliminate semantic in-
consistencies between consumer’s and provider’s SLA template. They present an ar-
chitecture for the management of meta-negotiation documents and SLA-mappings and
incorporate that architecture into a Grid workflow management tool.

9 Conclusions and Future Works

In this paper, we have shown how it is possible, using a Cloud-oriented API derived
from the mOSAIC project, to build up an SLA-oriented Cloud application. It enables
the management of security features related to Intrusion Tolerance against XML-based
Denial of Services attacks to an Infrastructure as a Service (IaaS) Cloud provider. The
application that enables SLA management is built in order to receive a WS-Agreement
file containing a description of the security features. We proposed a simple schema
for description of the guarantees offered by the system to the customers against DoS
attacks. Once the customer has obtained an agreement with the SLA management sys-
tem, his requests will be transparently enriched with security features. In our case study,
we support the Web Server with an Intrusion Tolerance system that grants against a de-
fined attack type. Finally, in previous work [23], we proposed an extensible intrusion
detection management framework, which can be offered to Cloud providers in order
to implement distributed IDSs for detection of cyber attacks to their Clouds. In future

SLA-Oriented Security Provisioning for Cloud Computing 243

work, we will integrate the contribute of the current paper with the implemented intru-
sion detection framework presented in [23].

References

1. Westphall, C.B., Lamin, F.R.: SLA Perspective in Security Management for Cloud Comput-
ing. In: Proc. of the Int. Conf. on Networking and Services, pp. 212–217 (2010)

2. Cheng, F., Meinel, C.: Intrusion Detection in the Cloud. In: Proc. of the IEEE Int. Conf. on
Dependable, Autonomic and Secure Computing, pp. 729–734 (December 2009)

3. mOSAIC: Open Source API and platform for multiple Clouds (2010),
http://www.mosaic-cloud.eu

4. Rak, M., Venticinque, S., Aversa, R., Di Martino, B.: User Centric Service Level Manage-
ment in mOSAIC Application. In: Proc. of the Europar 2011 Workshop, pp. 106–115. IEEE
CS Press (2011)

5. Kouznetsov, P., Haeberlen, A., Druschel, P.: The case for Byzantine fault detection. In: Proc.
of the 2nd Workshop on Hot Topics in System Dependability, pp. 5–10 (2006)

6. Neves, N.F., Sousa, P., Verissimo, P.: Proactive resilience through architectural hybridization.
In: Proc. of the ACM Symp. on Applied Computing (SAC 2006), pp. 686–690 (2006)

7. Mista, R., Bakken, D., Dyreron, C., Franz, A., Medidi, M.: Mrfusion: A programmable data
fusion middleware subsystem with a tunable statistical profiling service. In: Proc. of the Int.
Conference on Dependable Systems and Network (DSN 2002), pp. 273–278 (2002)

8. Ficco, M., Rak, M.: Intrusion tolerance of stealth DoS attacks to web services. In:
Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP AICT, vol. 376, pp.
579–584. Springer, Heidelberg (2012)

9. Coppolino, L., D’Antonio, S., Esposito, M., Romano, L.: Exploiting diversity and correlation
to improve the performance of intrusion detection systems. In: Proc. of the Int. Conf. on
Network and Service Security, pp. 24–26 (2009)

10. Ficco, M., Romano, L.: A generic intrusion detection and diagnoser system based on com-
plex event processing. In: Proc. of the 1st International Conference on Data Compression,
Communication, and Processing (CCP 2011), pp. 285–292 (2011)

11. Heimbigner., D., Knight, J., Wolf, A.: The willow architecture: Comprehensive survivability
for large-scale distributed applications. In: Proc. of the Intrusion Tolerant System Workshop,
pp. 71–78 (2002)

12. Squid: an open source fully-featured HTTP/1.0 proxy (2012),
http://www.squid-cache.org

13. Ganglia, a scalable distributed monitoring system for high-performance computing systems
(2012), http://ganglia.sourceforge.net

14. Ficco, M., Rak, M.: Intrusion tolerant approach for denial of service attacks to web services.
In: Proc. of the 1st Int. Conf. on Data Compression, Communications and Processing (CCP
2011), pp. 285–292. IEEE CS Press (2011)

15. TPC Benchmark W (TPC-W), a transactional web benchmark (2012),
http://www.tpc.org/tpcw/

16. Ficco, M., Rak, M.: Intrusion tolerance in cloud applications: The mOSAIC approach. In:
Proc. of the 6th International Conference on Complex, Intelligent, and Software Intensive
Systems, CISIS 2012, pp. 170–176 (2012)

17. Rak, M., Liccardo, L., Aversa, R.: A SLA-based Interface for Security Management in Cloud
and GRID Integrations. In: Proc. of the 7th International Conference on Information Assur-
ance and Security (IAS). IEEE Press (2011)

http://www.mosaic-cloud.eu
http://www.squid-cache.org
http://ganglia.sourceforge.net
http://www.tpc.org/tpcw/

244 M. Ficco and M. Rak

18. Karjoth, G., Pfitzmann, B., Schunter, M., Waidner, M.: Service-oriented Assurance, Com-
prehensive Security by Explicit Assurances. In: Quality of Protection, vol. 23, pp. 13–24.
Springer (2006)

19. Smith, M., Schmidt, M., Fallenbeck, N., Schridde, C., Freisleben, B.: Optimising Security
Configurations with Service Level Agreements. In: Proc. of the 7th Int. Conf. on Optimiza-
tion: Techniques and Applications (ICOTA 2007), pp. 367–381. IEEE Press (2007)

20. Brandic, I., Music, D., Dustdar, S., Venugopal, S., Buyya, R.: Advanced QoS methods for
Grid workflows based on meta-negotiations and SLA-mappings. In: Proc. of the 3th Work-
shop on Workflows in Support of Large Scale Science (2008)

21. Ficco, M., Rak, M., Di Martino, B.: An intrusion detection framework for supporting SLA
assessment in cloud computing. In: Proc. of the 4th Int. Conf. on Computational Aspects of
Social Networks (CASoN), pp. 244–249. IEEE CS Press (November 2012)

22. Palmieri, F., Fiore, U., Castiglione, A.: Automatic security assessment for next generation
wireless mobile networks. In: Mobile Information Systems, vol. 7(3), pp. 217–239. IOS Press
(2011)

23. Ficco, M., Venticinque, S., Di Martino, B.: mOSAIC-Based intrusion detection framework
for cloud computing. In: Meersman, R., et al. (eds.) OTM 2012, Part II. LNCS, vol. 7566,
pp. 628–644. Springer, Heidelberg (2012)

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 245–264, 2013.
© Springer International Publishing Switzerland 2013

Cloud Storage and Bioinformatics in a Private Cloud
Deployment: Lessons for Data Intensive Research

Victor Chang1,2, Robert John Walters1, and Gary Wills1

1 Electronics and Computer Science, University of Southampton,
Southampton SO 17 1BJ, U.K.

2 School of Computing and Creative Technologies, Leeds Metropolitan University,
Headingley, Leeds LS6 3QS, U.K.

{vic1e09,rjw1,gbw}@ecs.soton.ac.uk,
V.I.Chang@leedsmet.ac.uk

Abstract. This paper describes service portability for a private cloud
deployment, including a detailed case study about Cloud Storage and
bioinformatics services developed as part of the Cloud Computing Adoption
Framework (CCAF). Our Cloud Storage design and deployment is based on
Storage Area Network (SAN) technologies, details of which include
functionalities, technical implementation, architecture and user support.
Experiments for data services (backup automation, data recovery and data
migration) are performed and results confirm backup automation is completed
swiftly and is reliable for data-intensive research. The data recovery result
confirms that execution time is in proportion to quantity of recovered data, but
the failure rate increases in an exponential manner. The data migration result
confirms execution time is in proportion to disk volume of migrated data, but
again the failure rate increases in an exponential manner. In addition, benefits
of CCAF are illustrated using several bioinformatics examples such as tumour
modelling, brain imaging, insulin molecules and simulations for medical
training. Our Cloud Storage solution described here offers cost reduction, time-
saving and user friendliness.

1 Introduction

Cloud Computing offers a variety of benefits including cost-saving, agility, efficiency,
resource consolidation, business opportunities and Green IT [9-13, 16-18, 20, 23]. As
more organisations adopt Cloud, the need for a standard, or a framework to manage both
operation management and IT services is emerging. This framework needs to provide the
structure necessary to ensure any Cloud implementation meets the business needs of
Industry and Academia and include recommendations of best practices which can be
adapted for different domains and platforms. Our framework is called the Cloud
Computing Adoption Framework (CCAF). It helps organisations to achieve good Cloud
design, implementation and services [11-20]. CCAF may be used from service strategy
to design, development, test and user support stages. The CCAF seeks to address two
problems in particular:

246 V. Chang, R.J. Walters, and G. Wills

• Calculating Cloud Business Performance systematically and coherently.
• Portability of services into the Cloud

This paper focuses on service portability which is the term we use to describe a
recommended approach to Cloud adoption. Cloud adoption plays an important role in
having a smooth transition to the Cloud environment. Beaty et al. [3] and Chang et al.
[11,18,20] identify portability as an adoption challenge for organisational Cloud
adoption. Although it is domain specific as there are different requirements for
portability in each domain, communication between different types of clouds supplied
by different vendors can be difficult to implement. Often work-arounds are needed
which entail writing additional layers of APIs, or an interface or portal [2,3].

Service portability (portability in short) is illustrated using examples from Cloud
Storage projects in the Healthcare industry where portability is influential in migrating
existing infrastructure, platforms and applications to the Cloud and later developing
new applications and services. The storage is provided using in-house private clouds,
initially to provide a working IaaS infrastructure for medical databases, images and
analysis in a secure and collaborative environment. These Cloud projects have been
successfully delivered and provide a high level of user satisfaction and were followed
up with further work to upgrade from IaaS to PaaS, which allows greater benefits,
including better efficiency and better management of resources. We also present results
from experiments for data services (backup automation, data recovery and data
migration) which can help us to meet issues and challenges of data-intensive research.
The structure of this paper is as follows. Section 2 describes the overview of Cloud
Storage and Section 3 presents its deployment architecture and user support. Section 4
explains bioinformatics and its associated results. Section 5 discusses performance
results for data-intensive storage. Section 6 presents topics of discussion and Section 7
sums up Conclusion and future work.

2 Healthcare Cloud Storage

Supported by NHS UK, Guy’s and St Thomas NHS Trust (GSTT) and King’s College
London (KCL) have worked together on projects to implement Cloud Storage and
deliver it as a service. The initial effort was directed to an evaluation of the
technology and developed a proof of concept service. CCAF is instrumental and
influential in the way Cloud Storage has been developed:

• Healthcare Cloud Storage is a PaaS system, and needed careful planning and
a thorough implementation. This required integrated adoption of multiple
vendors’ solutions.

• Healthcare Cloud Storage is an area to experience rapid growth in user
requirements and disk space consumption. Therefore, it had to be easy to use,
and able to cope with increasing demand.

• Healthcare Cloud Storage is a new concept and implementation in the Health
domain where private and in-house storage has been used in the past.
Maintenance of data protection and security is a challenge.

 Cloud Storage and Bioinformatics in a Private Cloud Deployment 247

Better performance in from Healthcare Cloud Storage than previous storage service
is regarded as a benchmark and measurement for success by executives.
Recommendations, strategy and support from CCAF provided useful good services.
Healthcare Cloud Storage has used trials during its design and implementation to
ensure it meets its requirement to provide a robust service.

Healthcare Cloud Storage is used by the Breast Cancer project. Breast cancer is the
most common cancer in women and has a worldwide annual incidence of over 1
million cases. There are many thousands of data about patients (medical records) and
tumours (detailed descriptions and images, and its relations to the patients). Data
growth is rapid and the data needs to be carefully used and protected. The work
involves integrating software and cloud technologies from commercial vendors
including Oracle, VMWare, EMC, Iomega and HP. This is to ensure a solid
infrastructure and platform is available. Researchers also use third party applications
to access, view and edit tumour images from trusted locations. Security is enforced in
terms of data encryption, SSL and firewalls. Ion addition to Cloud Storage, the Health
Cloud platform also provides Bioinformatics services, which provide scientific
visualisation and modelling of genes, proteins, DNA, tumour and brain images. Users
are very supportive in this project and some of them use it daily.

2.1 Benefits from Adopting CCAF

Adopting CCAF assists with understanding of requirements, technical knowledge, use
cases and issues to be aware of, before and during the project development.
Healthcare Cloud Storage is implemented as a Private Cloud project and is divided
into four stages summed up as follows.

Stage 1 Explore available technologies, understanding strength and
weaknesses for each key technology. Capture user requirements to get
into technical plans.

Stage 2 Propose a framework based on the outcomes in Stage 1 and CCAF,
and carry out plans for building and validating the framework.

Stage 3 Propose and implement service oriented architecture for Cloud
Storage based on CCAF. Offer services for users and research groups.

Stage 4 Continue service improvements and further integration with other
services and other new requirements.

Healthcare Cloud offers a wide range of self- and automated services across secure
networks. It has two different focuses. It must be easy to use and support several
research groups (both synchronously and asynchronously) and be able to cope with
frequent changes, updates and user activities. It must also be highly robust and stable,
allowing data to be kept safe, secure and active for extended periods of time (ten
years and above). Both aspects demand for the following four requirements:

• Automated backup.

• Data recovery and emergency services. Snapshots or disaster recovery are
used.

248 V. Chang, R.J. Walters, and G. Wills

• Quality of services: high availability, reliability and great usability.

• Security.

This needs the state-of-the-art design and implementation that the CCAF can
offer. The CCAF positively influences the way the backup and storage are designed
and deployed. CCAF also offers implementation insights such as integration, as it is a
challenge to co-ordinate and to combine different research activities and repositories
into a distributed storage. This leads to the use of third party applications and services
to improve on the quality of services.

2.2 A Storage Area Network Made Up of Different Clusters of Network
Attached Storage (NAS)

The Architecture design chosen uses two concurrent platforms. The first is based on
Network Attached Storage (NAS), and the second is based on the Storage Area
Network (SAN). The NAS platform provides great usability and accessibility for
users. Each NAS may be allocated to a research group and operate independently.
Then all the NAS can be joined up to establish a SAN. NAS supports individual
backups with manual and automated options. One option is similar to the Dropbox
pattern of backup enabling users to copy their files onto their allocated disk space
without difficulty providing a backup facility which is easy to use and user-friendly.
Such a manual service allows users to backup their resources onto a selected
destination and can offer both compressed and uncompressed versions of backup as
well as data encryption to enforce security.

The Storage Area Network (SAN) is a dedicated and extremely reliable backup
solution offering a highly robust and stable platform. SAN can consolidate an
organisational backup platform and can improve capabilities and performance of
Cloud Storage. SAN allows data to be kept safe and archived for a long period of
time, and is a chosen technology. A SAN can be made up of different NAS, so that
each NAS can focus on a particular function.

The design of SAN focuses on SCSI, which offers dual controllers and dual
networking gigabyte channels. Each SAN server is built on RAID system. RAID 10 is
a good choice since it can boost the performance like RAID 0 but also has mirroring
capability like RAID1. A SAN can be built to have 12TB of disk space, and a group
of SAN can form a solid cluster, or a dedicated Wide Area of Network. There are
written and upgraded applications in each SAN to achieve the following functions:

• Performance improvement and monitoring: This allows tracking the overall
and specific performance of the SAN cluster, and also enhances group or
individual performance if necessary.

• Disk management: When a pool of SAN is established, it is important to know
which hard disks in the SAN serve for which servers or which user groups.

• Advanced backup: Similar functionalities to those described in the NAS,
such as automation, data recovery and quality of services, are available here.
The difference is more sophisticated techniques and mechanisms (use of
enterprise software is optional) are required.

 Cloud Storage and Bioinformatics in a Private Cloud Deployment 249

Some applications mainly based on PHP, MySQL and Apache have been written,
to allow researchers to access the digital repository containing tumours. Users can
access their Cloud Storage via browsers from trusted offices, and they need not worry
about complexity, and work as if on their familiar systems. This Healthcare PaaS is a
demonstration of enterprise portability. In addition, several upgrades have taken place
to ensure the standard of Cloud Storage and quality of services. One example is the
use of SSL certificates and the enforced authentication and authorisation of every user
to improve on security. There is an automated service to backup important resources.

3 Healthcare Cloud Storage Deployment Architecture and User
Support

This section describes how Cloud Storage is set up, and how its key functionality
offers services and user support. Cloud Storage is a private-cloud SAN architecture
made up of different NAS services, where each NAS is dedicated for one specific
function. Design and Deployment is based on group requirements and their research
focus.

3.1 Design and Deployment to Meet Challenges for Data Intensive Research

Design and deployment should meet challenges for data-intensive research
challenges. Moore et al [25] and Bryant [4] point out that data-intensive research
should meet demands for data recovery and data migration and allows a large number
of data to be recovered and moved quickly and efficiently in ordinary operations and
in emergency. This is suitable for Cloud Storage as the design and deployment must
provide resilient, swift and effective services. Vo, Chen and Ooi [27] present their
perspective on Cloud Storage and demonstrate how to perform experiments in data
intensive environments, including performing read, write and transaction operations.
They demonstrate their solution for data migration but there is a lack of consideration
of data recovery which is important in the event of possible data loss. Abu-Libdeh,
Princehouse and Weatherspoon [1] demonstrate their Cloud Storage case study which
presents how “Failure Recovery” can get large-scaled data recovery and data
migration completed. Although they demonstrate data migration and data recovery
over months in their in-house development, they do not show the execution time for
each data migration and recovery. This is an important aspect in Cloud Storage to
allow each operation of large-scale data recovery and data migration to run smoothly
and effectively. Design and deployment of Cloud Storage must meet demands in
large-scaled backup automation, data recovery and data migration.

3.2 Selections of Technology Solutions

Selections of Technology Solutions are essential for Cloud Storage development as
presented in Table 1.

250 V. Chang, R.J. Walters, and G. Wills

Table 1. Selections of Technology Solutions

Technology
selections

What is it used Vendors
involved

Focus or rationale Benefits or impacts

Network
Attached
Storage (NAS)

To store data
and perform
automated and
manual/
personal
backup.

Iomega/EMC
Lacie
Western
Digital
HP

They have a different
focus and set up. HP is
more robust but more
time-consuming to
configure. The rest is
distributed between
RAID 0, 1 and 5.

Each specific function
is assigned with each
NAS. There are 5
NAS at GSTT/KCL
site and 3 at Data
Centre, including 2 for
Archiving.
Deployment
Architecture is shown
in Figure 1.

Infrastructure
(networking
and hosting
solution)

Collaborator
and in-house

University of
London Data
Centre

Some services need a
more secure and
reliable place.
University of London
Data Centre offers
24/7 services with
around 500 servers in
place, and is ideal for
hosting solution.

Amount of work is
reduced for
maintenance of the
entire infrastructure. It
stores crucial data and
used for archiving,
which backup
historical data and
backup the most
important data
automatically and
periodically.

Backup
applications

Third party
and in-house

Open Source
Oracle
HP
Vmware
Symantec
In-house
development

There is a mixture of in-
house development and
third party solution. HP
software is used for
high availability and
reliability. The rest is to
support backup in
between NAS. Vmware
is used for virtual
storage and backup.

Some applications are
good in a particular
service, and it is
important to identify
the most suitable
application for
particular services.

Virtualisation Third party VMware
VSphere and
Citrix

It consolidates IaaS
and PaaS in private
cloud deployment.

Resources can be
virtualised and saves
effort such as
replication.

Security Third party
and in-house

KCL/GSTT
Macafee
Symantec
F5

Security is based on
the in-house solution
and vendor solution is
focused on secure
firewall and anti-virus.

Remote access is
given to a list of
approved users.

 Cloud Storage and Bioinformatics in a Private Cloud Deployment 251

3.3 Deployment Architecture

There are two sites for hosting data, one is jointly at GSTT and KCL premises
distributed in dedicated server rooms and the other is at University of London Data
Centre to store and backup the most important data. Figure 1 shows the Deployment
Architecture.

There are five NAS at GSTT and KCL premises and each NAS is provided for a
specific function. Bioinformatics Group has the most demands. NAS 1 is used for their
secure backup, and NAS 2 is used for their computational backup, which is then
connected to Bioinformatics services. NAS 3 is used as an important gateway for
backup and archiving and is an active service connecting with the rest. NAS 3 is shared
and used by Cancer Epidemiology and BCBG Group. NAS 4 provides mirror services
for different locations and offers an alternative in case of data loss. NAS 5 is initially
used by Digital Cancer cluster, and helps to back up important files in NAS 3. There are
two digital cancer clusters, which can back up between each other, and important data
are backed up to NAS 8 for reliability and NAS 5 for local version. The reason for this
is that a disaster recovery activity which took place in 2010 took two weeks full time to
retrieve and recover data. Multiple backups ensure if one dataset is lost, the most recent
archive (done daily) can be replaced without much time spent.

There are three NAS at the University of London Computing (Data) Centre
(ULCC) where there are about 500 servers hosted for Cloud and HPC services. NAS
6 is used as a central backup database to store and archive experimental data and
images. The other two advanced servers are customised to work as NAS 7 and 8 to
store and archive valuable data. Performance for backup and archiving services is
excellent and most data can be backed up in a short and acceptable time frame of less
than one hour to back up data and images. This outcome is widely supported by users
and executives. There are additional five high performance computing services based
on Cloud technologies: Two are computational statistics to analyse complex data. The
third one is a database to store confidential data and the fourth is on bioinformatics to
help bioinformatics research. The last one is a virtualisation service that allows all
data and backup to be in virtual storage format. These five services are not included in
Cloud Storage for this paper.

3.4 User Support

The entire Cloud Storage Service has automated capability and is easy to use. This
service has been in use without the presence of Chief Architect for six months,
without major problems reported. Secondary level of user support at GSTT and KCL
(such as login, networking and power restoration) has been excellent. There is a plan
to obtain approval to measure user satisfaction.

4 Bioinformatics

The bioinformatics services activity started in September 2008 and was completed in
February 2011. It is an in-house solution focusing on scientific visualisation and
modelling aiming to understand research analysis and improve existing services. The
use of Cloud offers two distinct advantages:

252 V. Chang, R.J. Walters, and G. Wills

Fig. 1. Cloud Storage Deployment Architecture

 Cloud Storage and Bioinformatics in a Private Cloud Deployment 253

(i) A PaaS for developers to simulate dynamic 3D modelling and visualisation for
proteins, genes, molecules and medical imaging, where results can be
instantaneous and data can be visualised, stored and shared securely.

(ii) Any complex modelling, such as growth of tumour and segmentation of brains,
can be presented with the ease.

Each section is described as follows.

4.1 Tumour Modelling

Tumours develop as a result of abnormal and rapid growth of cells, and there are two
types of tumours. The first type is benign tumours, which are harmless to human
bodies. The second type is malignant tumours, which are malicious, should be
removed and patients with them should be treated as soon as possible. Despite the fact
that current technologies can take high-resolution pictures of tumours, it is extremely
helpful for high performance Cloud resources to simulate the growth and formation of
tumours, and this allows scientists and surgeons to diagnose possibilities of tumour
growth and gain a better understanding about treatment [21]. See Figure 2 for tumour
modelling.

Fig. 2. Selected figures in Tumour modelling

4.2 Medical Imaging

Medical imaging is widely adopted in Hospitals and medical institutes, and new ways
to improve existing medical imaging services are regularly exploited. Bioinformatics
Cloud platform allows computation and visualisation, and currently brain imaging can
be used for demonstration. The aim is to study segmentation of brains, which divides
the brain into ten major regions. The Cloud platform has these two functions: (i) it can
highlight each region for ten different segments; and (ii) it can adjust intensity of
segmentation to allow basic study of brain medicine. Figure 3 below shows selected
brain imaging. Segmentation is an important aspect in brain study and it has two
different functionalities. Firstly, it can highlight different areas in the cerebrum, where
the different light intensity can highlight which particular areas. Secondly,
segmentation can show different areas in the brain, including cerebellum, temporal
lobe, mid-brain and so on. This allows medical students and instructors to understand
the structure of human brain with the ease, but it also provides a platform to identity
the right spot of the brain in a quick and efficient manner.

254 V. Chang, R.J. Walters, and G. Wills

Fig. 3. Selected brain imaging

Fig. 4. Investigation of insulin molecules on Cloud

4.3 Insulin Molecules

Insulin is a hormone central to regulating carbohydrate and fat metabolism in the
body, and is important for type one diabetes treatment. Insulin has a molecular
structure, and the study of its structure and formation helps scientists to understand
how to improve treatment. Cloud offers a platform for simulations and modelling
enabling cutting-edge techniques to be used for Health Cloud for 3D Visualisation
and modelling. This allows researchers to identify the areas in the molecule that they
plan to study, and it allows 360 degrees rotation and zooming function, so that one
particular area in the molecule can be magnified for different studies. Figure 4 shows
the insulin molecule in original size and in zooms.

4.4 Simulations for Medical Training

3D simulations on Cloud are very useful for medical education and workshop, since
explanations can be made easier and participants can understand better with the aid of
visualisation. 3D simulations such as DNA modelling, Poyllotaxis Spirals and cleavage
of embryos have been used for training, and have positive feedback and support.

 Cloud Storage and Bioinformatics in a Private Cloud Deployment 255

5 Trials for Cloud Storage

The design and implementation of a robust Storage Area Network (SAN) requires
integrations of different technologies. Only minimal modelling and simulations are
needed, since the focus is on building up a service from the very beginning.
Experiments provide a suitable research method, since they can identify issues such as
performance, technical capabilities (such as recovery), and whether integration of
technologies can deliver services. User and executive requirements are important
factors for what type of experiments to be performed and measured. Thousands of
files (data and records) are used for performance tests and the time to complete the
same amount of jobs is recorded. Venue of test is between two sites: ULCC and
GSTT/KCL and execution time is used as the benchmark. There are three data
services and each service is used to perform experiments as follows:

• Backup Automation
• Data recovery
• Data migration

5.1 Backup Automation

Cloud Storage uses a number of enterprise solutions such as Iomega/EMC, Lacie,
Western Digital and HP to deliver fast and reliable services including automation. The
experiment performs automated backup of between 1,000 and 10,000 files, which are
available in the existing system for user support. Each set of experiments is performed
three times with the average time obtained. Results are shown in Figure 5.

5.2 Data Recovery

Data recovery is another important service to recover lost data due to accidents or
emergency services. In the previous experience, it took two weeks to recover 5 TB of
data as it required different skills and systems to retrieve data and restore good quality
data back to Cloud services. Data archived as Virtual Machines or Virtual Storage
speeds up recovery process. In addition, there are mirror servers so, even if a server is
completely broken, data can be recovered to resume services. See Figure 6 for their
execution time.

5.3 Data Migration of Single Large Files

Data migration is common amongst Clouds and is also relevant to data intensive
research. When there are more organisations going for private cloud deployment, data
migration between Clouds is common and may influence the service delivery
[2,6,7,22]. But there is no investigation the impact of moving single large files
between private clouds. Hence, the objective here is to identify the execution time for
moving single large file. Each file is between 100 GB and 1 TB. Figure 7 shows the
results.

256 V. Chang, R.J. Walters, and G. Wills

Automation execution time

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10

1 unit = 1,000 files

T
im

e
ta

ke
n

 (
se

c)

Execution
time

Fig. 5. Automation execution time for Cloud Storage

Data recovery

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

1 unit = 1,000 files

T
im

e
ta

ke
n

 (
se

c)

Execution
time

Fig. 6. Data Recovery

5.4 The Percentage of Failure Rates

The percentage of failure rates in Cloud Storage operations is important as each
failure in service will result in loss of time, profit and resources. This part of
experiment is to calculate the percentage of failures, where services in Section 5.1 and
5.3 are running real-time and record the number of successful and failed operations.
Failed operations happen in the Cloud environments. Monitoring the failure rate is
important as failures contribute to the development of risks. To reduce the impacts

 Cloud Storage and Bioinformatics in a Private Cloud Deployment 257

Data migration (large files) between clouds

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

1 unit = a single file of 100 GB

T
im

e
ta

ke
n

 (
se

c)

Execution
time

Fig. 7. Data migration of large single files between clouds

from risk (as a result of Cloud adoption), Chang et al [12,13,16,20] demonstrate that
controlled risk in Cloud adoption can be monitored and presented in the form of risk-
free rate, or risk-occurring rate if the focus is on the measuring the extent of failure
rates. There are hundreds of successful operations versus and a number of failed
operations.

5.4.1 Failure Rate in Backup Automation
Backup automation is relatively reliable and out of hundreds of thousands of
operations, the failure rate is below 2%. The reason is that backup automation has
been available for a significant number of years with the result that it is a mature
technology

5.4.2 Failure Rate in Data Recovery
Data recovery for large-scale data in Cloud is important and the failure rate is shown
in Figure 8 based on the number of successful and failed operations since 2009. The
interesting result is when there is a low amount of data, the percentage of failure is
low. When the amount of recovered data increases, the execution time is
approximately proportional to the amount of data but the failure rate increases more
quickly and the graph looks close to an exponential curve.

5.4.3 Failure Rate in Data Migration
Data migration of large files in Cloud is common and important as Storage is
designed for terabytes and petabytes. The failure rate is shown in Figure 9 based on
the number of successful and failed operations since 2009. Similar to Figure 8, the
curve is close to an exponential one, which means when the volume of the migrated
file increases, the failure rate increases significantly.

258 V. Chang, R.J. Walters, and G. Wills

Failure rate for data recovery

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

1 unit = 1,000 files

P
er

ce
n

ta
g

e
o

f
fa

ilu
re

 (
%

)

Failure rate
for data
recovery

Fig. 8. Failure rate of data recovery

Failure rate of data migration

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

1 unit = a single file of 100 GB

P
er

ce
n

ta
g

e
o

f
fa

il
u

re
 (

%
)

Failure rate of
data migration

Fig. 9. Failure rate of data migration

5.5 Summary of All Experiments

Service and backup automation for Cloud storage takes the least execution time and
there are several services to speed up the process of automation. Execution time is
between 8 and 46 seconds backup 1,000 to 10,000 files to automatically. The second
experiment is data recovery, where data archived as Virtual Machines or Virtual
Storage in a well-managed platform can speed up recovery process. Data recovery
takes between 135 seconds to 1,312 seconds to recover 1,000 to 10,000 of files. The
third experiment focuses on data migration of large single files, which are important
for data intensive research. Data migration takes between 174 seconds to 2,686

 Cloud Storage and Bioinformatics in a Private Cloud Deployment 259

seconds to move a single file of 100 GB to 1 TB. Although Figures 3 and 4 still show
a linear graph, more execution time is required to recover data and move a large
single file and the percentage of unsuccessful data recovery and migration is likely to
increase.

The results strongly suggest that it is quicker to move data around Clouds in many
smaller files. Our results also confirm that automation in Cloud is better established
than data recovery and data migration of single large files, and these two are perhaps
challenges that data-intensive research need to overcome. Failure rate for these three
major operations are demonstrated. Backup automation is the most reliable and stays
below 2% all the times. Figure 6 is similar to Figure 5 and shows that failure rate of
data migration; when the volume of the migrated file increases, so does the failure
rate.

6 Discussions

There are several topics for discussions presented as follows.

6.1 Challenges for Data Intensive Research in Cloud

Cloud Storage can offer services up to petabytes of storage and beyond. The results in
Section 4 confirm that large-scaled data recovery and data migration in Cloud need to
improve in its technical capabilities. This is reflected in the percentage of failure rate
and how the failure rate apparently increases exponentially to 14.6% as data recovery
volume increases to 10,000 files. Similarly, an exponential increase is experienced to
20.4% when data migration disk increases to 1 TB per file. Our results demonstrate
data recovery and data migration issues for thousands of files have to be resolved and
improved prior dealing with challenges in petabytes.

6.2 User Feedback on Cloud Storage

Currently Cloud Storage has provided users the following benefits:

• Cost reduction: The service is automated and saves costs in hiring and
deploying staff and deployment of a larger and more expensive project that
works the same. There is no need to hire a team to look after maintenance
and daily services.

• Time-saving: Cloud Storage simplifies the complex backup process and
saves time in performing backups. Users find that they need not spend
significant time for back up.

• User friendliness: Cloud Storage offers easy to use features and users
without prior knowledge can find it simple to use.

Healthcare community has a Data Protection Policy and not all types of services
are able to release data. Services that do not use patients’ data or confidential
information are likely to be presented.

260 V. Chang, R.J. Walters, and G. Wills

6.3 Plug and Play Features in Cloud Storage for Data Intensive Research

There are papers explaining the importance and relevance of data intensive research,
and why it is essential for Cloud development and services [22,26]. This Cloud
Storage allows plugs and play, which means adding additional hard disks to existing
NAS, or new NAS, can still provide services in place. This has been tested in 2010
where disk volume of NAS 7 and 8 were increased from 20 TB to 44 TB without
interruptions of services. This Cloud Storage was also tested to store and protect data
of up to 100 TB on another occasion. This allows any addition of hard disks and
applications within 100 TB limit to provide user support and services.

Cloud Storage has been in used daily by medical researchers, and there are a few
local administrators supporting a minimum level of services. The focus for this
service is no longer in technical implementation but rather user satisfaction.

6.4 Relative Performance

Buyya et al [5,6,7] describe technical performance in detail. Often results are very
technical and most organisations considering or implementing Clouds find those
results difficult to follow [10,11,13]. Relative performance is an easier term to
compare performance with, and is defined as the improvement in performance
between an old service (before) and a new service (after). Latch et al. [24] also use
relative performance to present their Bayesian clustering software where the key
performance indicators are presented in terms of percentages of improvement.
Although Latch et al. [24] still use statistical approach where some data have little
impact or relevance to organisational adoption, the benefit of using relative
performance approach is to bring down level of complexity and allows stake holders
to understand the percentage of improvement.

A hybrid case study is relevant for organisational Cloud adoption, since data needs
to be checked prior computational analysis and often this needs supporting interviews
and surveys. From interviewing members of management, their views can be summed
up as follows:

• They support the use of relative performance, as most of the executives are
not from IT backgrounds.

• The use of key performance indicators in relative performance makes it easy
for the executives to understand and follow the extents of improvement.

6.5 The Proposal for “Healthcare Platform as a Service” (Hpaas) for
Research and Education

Cloud Computing offers contributions to research and development, as complex
simulations can be computed and modelled with the on-demand capabilities, elasticity
and scalability that Cloud can provide. Genes, molecules and medical imaging can be
modelled at high speed and results can be computed and viewed in real-time. This is
due to the establishment of PaaS to minimise the execution time so that 3D simulation
can be running right after the code development on Cloud.

 Cloud Storage and Bioinformatics in a Private Cloud Deployment 261

Bioinformatics services also compare the performance improvements before and
after introducing Cloud as an important ROI measurement. Chang et al. [12]
demonstrate that 1.2% - 7.2% time reduction for code development is achieved. Their
objective is clearly met and project delivery is straightforward with progressive
improvements. Different Health Cloud projects in Infrastructure, Bioinformatics,
Statistics, HPC, Data Services and Security have worked together in an integrated
environment to establish Health Platform as a Service (HPaas), which brings the
following benefits:

• Different activities in private cloud can work together.
• The expertise in each area can be consolidated within the HPaaS.
• The outcome of one service can be the input to another.

Efficiency has improved as the Cloud saves time and resources to repeat the same
processes, which can be automated. This is important in case the systems and/or
services break that automated virtualised environments can quickly provision to the
original setting. 3D Bioinformatics enhances the level of research and simulations can
help surgeons and medical staff to make the right decisions. Chang et al. [14,17,20]
also demonstrate Business Integration as a Service (BIaaS) that can further improve
the process and integration of different activities in HPaaS.

7 Conclusions

This paper illustrates PaaS Portability in the form of Healthcare Cloud Storage, which
is designed, deployed and serviced to GSTT and KCL under the recommendation of
CCAF to ensure good Cloud design, deployment and services. Service Portability has
been designed, implemented and serviced at participating organisations to provide
added values such as efficiency improvement and time reduction in code development
and execution time. User Groups for the system are divided into Bioinformatics
Group, Databank and Cancer Epidemiology Group, BCBG Group, Tissue Bank and
Senior Clinicians. The CCAF was useful and helped the Health Community to
achieve good private cloud design, deployment and services while following user
requirements and challenges, and executives’ feedback closely.

Healthcare Cloud Storage implements a data service as an easy-to-use, automated
and collaborative platform which some users use every day. It is distributed between
two physical locations: University of London Data Centre and GSTT/KCL and is
designed and built to align with group and research requirements. It uses a
private-cloud SAN architecture made up from different NAS services.

The Deployment Architecture shows the connections between different NAS
services and how they are related. These services include Bioinformatics (multiple
services), joint Epidemiology and BCBG service, mirror services, two archiving
services, digital cancer services and multiple backup services. Automated and secure
backups take place between the two physical locations.

The first lesson from this activity is that recommendations from CCAF assist with
achieving good Cloud Design. A further lesson is that using experiments when
designing and implementing a Cloud-based Storage Area Network (SAN) is helpful

262 V. Chang, R.J. Walters, and G. Wills

and execution time can be used as the benchmark to determine their success.
Experiments were performed in three areas: automation, data recovery and data
migration.

• Automation in Cloud storage has enabled several services to speed up the
process of automation. Execution time is between 8 and 46 seconds to
automate backup 1,000 to 10,000 files.

• Data recovery in a well-managed platform can speed up recovery process
and takes between 135 seconds to 1,312 seconds to recover 1,000 to
10,000 of files. Data migration of large single files is important for data
intensive research. Data migration takes between 174 seconds to 2,686
seconds to move a single file of 100 GB to 1 TB.

• Our results also confirm that backup automation in Cloud is more mature
than data recovery or data migration of single large files, and these two
represent challenges that data-intensive research needs to overcome.
Relative performance is between Cloud Storage and traditional storage
have been presented.

Percentage failure rate is calculated for backup automation, data recovery and data
migration. Backup automation failure rate stays below 2% but the failure rate
increases rapidly to 14.6% for data recovery as the volume increases to 10,000 files.
Similarly, a rapid increase to as much as 20% is experienced in data migration as data
migration file size increases towards 1 TB. These results suggest that issues and
challenges remain within data recovery and migration which will need to be resolved
before systems progress to handling petabytes of storage.

Healthcare platform (HPaaS) enables different activities to work together, so that
expertise in one area can be consolidated. The use of 3D simulations allows
developers to compute results in real-time and data can be stored, visualised and
shared securely. 3D simulations of tumour, medical imaging and insulin have also
helped to improve the quality of research analysis, as well as providing better
understanding in the structure and formation of these analyses. All complex life
science modelling can be presented with ease, so that it not only can promote greater
awareness of health and disease issue, but also improves the quality of current
research and development.

References

1. Abu-Libdeh, H., Princehouse, L., Weatherspoon, H.: RACS: A Case for Cloud Storage
Diversity. In: SoCC 2010 Proceedings of the 1st ACM Symposium on Cloud Computing,
Indianapolis, Indiana, June 10-11 (2010)

2. Armbrust, M., Fox, A., Griffith, R., Jseph, A.D., Katz, R.H., Kownwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley View of
Cloud computing. Technical Report, No. UCB/EECS-2009-28, UC Berkeley (February
2009)

 Cloud Storage and Bioinformatics in a Private Cloud Deployment 263

3. Beaty, K., Kochut, A., Shaikh, H.: Desktop to Cloud Transformation Planning. In: 2009
IEEE International Symposium on Parallel and Distributed Processing, Rome, Italy, May
23-May 29 (2009)

4. Bryant, R.E.: Data-Intensive Supercomputing: The Case for DISC, Technical paper,
Carnegie Mellon University (October 2007)

5. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th
utility. Journal of Future Generation Computer Systems 25(6), 559–616 (2009)

6. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: Utility-Oriented Federation of Cloud
Computing Environments for Scaling of Application Services. In: Hsu, C.-H., Yang, L.T.,
Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081, pp. 13–31. Springer,
Heidelberg (2010)

7. Buyya, R., Beloglazov1, A., Abawajy, J.: Energy-Efficient Management of Data Center
Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges.
In: Buyya, et al. (eds.) PDPTA 2010 - The International Conference on Parallel and
Distributed Processing Techniques and Applications, Las Vegas, USA, July 12-15 (2010b)

8. Chang, V.: Cloud Storage Framework – An Integrated Technical Approach and Prototype
for Breast Cancer., Poster Paper and Technical Paper, UK All Hands Meeting (December
2009)

9. Chang, V., Bacigalupo, D., Wills, G., De Roure, D.: A Categorisation of Cloud Computing
Business Models. In: Chang, et al. (eds.) The 10th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, CCGrid 2010, Melbourne, Australia, May 17-20,
pp. 509–512 (2010a)

10. Chang, V., Wills, G., De Roure, D.: A Review of Cloud Business Models and
Sustainability. In: Chang, et al. (eds.) The Third International Conference on Cloud
Computing, IEEE Cloud 2010, Miami, Florida, USA, July 5-10 (2010b)

11. Chang, V., Li, C.S., De Roure, D., Wills, G., Walters, R., Chee, C.: The Finan-cial Clouds
Review. International Journal of Cloud Applications and Computing 1(2), 41–63 (2011a)
ISSN 2156-1834, eISSN 2156-1826

12. Chang, V., De Roure, D., Wills, G., Walters, R., Barry, T.: Organisational Sus-tainability
Modelling for Return on Investment: Case Studies presented by a National Health Service
(NHS) Trust UK. Journal of Computing and Information Technology 19(3) (2011b)
(in press); ISSN Print ISSN 1330-1136 | Online ISSN 1846-3908

13. Chang, V., De Roure, D., Wills, G., Walters, R.: Case Studies and Organisational
Sustainability Modelling presented by Cloud Computing Business Framework.
International Journal of Web Services Research (2011c) (in press) ISSN 1545-7362

14. Chang, V., Wills, G., Walters, R.: Towards Business Integration as a Service 2.0 (BIaaS
2.0). In: Chang, et al. (eds.) IEEE International Conference on e-Business Engineering,
The 3rd International Workshop on Cloud Services - Platform Accelerating e-Business,
Beijing, China, October 19-21 (2011d)

15. Chang, V., Wills, G., Walters, R.: The positive impacts offered by Healthcare Cloud and
3D Bioinformatics. In: Chang, et al. (eds.) 10th e-Science All Hands Meeting 2011, York,
September 26-29 (2011e)

16. Chang, V., Wills, G., Walters, R., Currie, W.: Towards a structured Cloud ROI: The
University of Southampton cost-saving and user satisfaction case studies. In: Chang, et al.
(eds.) Sustainable Green Computing: Practices, Methodologies and Technologies (2012a)

17. Chang, V., Walters, R., Wills, G.: Business Integration as a Service. International Journal
of Cloud Applications and Computing 2(1) (2012) ISSN 2156-1834, eISSN 2156-1826

264 V. Chang, R.J. Walters, and G. Wills

18. Chang, V., Walters, R.J., Wills, G.: Cloud Storage in a private cloud deployment: Lessons
for Data Intensive research (Best student paper). In: Chang, et al. (eds.) The Second
International Conference on Cloud Computing and Service Sciences (CLOSER 2012),
Porto, Portugal (2012c)

19. Chang, V., Wills, G.: A University of Greenwich Case Study of Cloud Computing –
Education as a Service. In: E-Logistics and E-Supply Chain Management: Applications for
Evolving Business. IGI Global (2013)

20. Chang, V., Walters, R.J., Wills, G.: The development that leads to the Cloud Computing
Business Framework. International Journal of Information Management (February 2013)

21. Grigoriadis, A., Chang, V., Schuitevoerder, M., Gillet, C., Tutt, A., Holmberg, L.: Cancer
Cloud Computing - Towards an Integrated Technology Platform for Breast Cancer
Research., Internal NHS Technical Paper (July 2009)

22. Hey, A.J.G.: The fourth paradigm: data-intensive scientific discovery. Microsoft
Publication (2009) ISBN-10: 0982544200

23. Kagermann, H., Österle, H., Jordan, J.M.: IT-Driven Business Models: Global Case
Studies in Transformation. John Wiley & Sons (2011)

24. Latch, E.K., Dharmarajan, G., Glaubitz, J.C., Rhodes. Jr., O.E.: Relative performance of
Bayesian clustering software for inferring population substructure and individual
assignment at low levels of population differentiation. Conservation Genetics 7, 295–302
(2006), doi:10.1007/s10592-005-9098-1

25. Moore, R.W., Baru, C., Marciano, R., Rajasekar, A., Wan, M.: Data-Intensive Computing.
In: The Grid: Blueprint for a New Computing Infrastructure, ch. 5 (1999) ISBN
1558609334

26. Moretti, C., Bulosan, J., Thain, D., Flynn, P.J.: All-Pairs: An Abstraction for Data-
Intensive Cloud Computing. In: IEEE International Symposium on Parallel and Distributed
Processing, IPDPS 2008, Miami, USA, April 14-18 (2008)

27. Vo, H.T., Chen, C., Ooi, B.C.: Towards Elastic Transactional Cloud Storage with Range
Query Support. Proceedings of the VLDB Endowment 3(1-2) (September 2010)

Author Index

Amarie, Alexandra Carpen 3
Andrikopoulos, Vasilios 215

Balouek, Daniel 3
Brazier, Frances M.T. 168

Chang, Victor 245
Charrier, Ghislain 3
Clark, Kassidy 168
Conway, Gerard 183
Curry, Edward 183

Desprez, Frédéric 3
Dı́az-Redondo, Rebeca P. 71
Dippl, Sebastian 117

Eccles, Jonathan 54

Fehling, Christoph 215
Fernández-Vilas, Ana 71
Ficco, Massimo 230

Guo, Li 102
Guo, Yike 102

He, Keqing 135
Hohenstein, Uwe 117

Ishida, Wataru 39

Jeannot, Emmanuel 3
Jeanvoine, Emmanuel 3
Jensen, Meiko 151

Kim, Myung Ho 86
Krummenacher, Reto 117

Lèbre, Adrien 3
Leymann, Frank 215
Li, Yang 102

Li, Zheng 135
Lo Iacono, Luigi 151
Loizou, George 54

Mainka, Christian 151
Margery, David 3
Marques, José Alves 200
Mittermeier, Ludwig 117

Niclausse, Nicolas 3
Nussbaum, Lucas 3

Pardal, Joana P. 200
Pardal, Miguel L. 200
Pazos-Arias, José J. 71
Perez, Christian 3

Quesnel, Flavien 3

Rak, Massimiliano 230
Richard, Olivier 3
Rohr, Cyril 3

Sakurai, Kouichi 23
Sarzyniec, Luc 3
Schwenk, Jörg 151
Sekiya, Yuji 39
Servia-Rodŕıguez, Sandra 71
Shima, Keiichi 39
Strauch, Steve 215

Walters, Robert John 245
Wang, Chong 135
Wang, Jian 135
Warnier, Martijn 168
Wills, Gary 245
Wong, Kok-Seng 86

Zhang, Xiuwei 135
Zhao, Laiping 23

	Preface
	Organization
	Table of Contents
	Invited Paper
	Adding Virtualization Capabilities to the Grid’5000 Testbed
	1 Introduction
	2 Grid’5000 Overview
	3 A Software Stack to Support Experiments
	3.1 Providing Custom Experimental Environments with Kadeploy
	3.2 Network Reservation with g5k-subnets
	3.3 Network Isolation with KaVLAN
	3.4 Providing a Unified Interface with a REST API

	4 Grid’5000 and Virtualization Capabilities: Use-cases
	4.1 Testing the Scalability of Kadeploy by Deploying 4000 Virtual Machines
	4.2 Playing with VMs at Large-Scale

	5 Related Work
	6 Conclusions and Future Work
	References

	Papers
	Improving Cost-Efficiency through Failure-Aware Server Management and Scheduling in Cloud
	1 Introduction
	2 Related Work
	3 Policy for Server Management
	3.1 Cloud Server Management
	3.2 Net Revenue
	3.3 Expected Net Revenue
	3.4 Decision Making
	3.5 Algorithm Description

	4 Revenue-Driven Scheduling
	4.1 MaxReliability
	4.2 Combined with Energy-Saving

	5 Experiments
	5.1 Simulation Environment
	5.2 Results

	6 Conclusions
	References

	Designing an IPv6-Oriented Datacenter with IPv4-IPv6 Translation Technology for Future Datacenter Operation
	1 Introduction
	2 Related Works
	2.1 IaaS Model
	2.2 Translators

	3 Design and Implementation of the IaaS System and the Translation Software
	3.1 Design and Implementation of the IaaS System
	3.2 Design and Implementation of the Translator Software

	4 System Evaluation
	5 Performance Evaluation
	5.1 Translation Performance
	5.2 Comparison with Related Methods
	5.3 Throughput in 10Gbps Environment

	6 Discussion
	7 Conclusions
	References

	Realization of a Functional Domain within a Cloud
	1 Introduction
	2 Preliminaries
	2.1 Current Paradigms
	2.2 Current Approaches
	2.3 Current Status
	2.4 New Approaches
	2.5 Server Process Abstraction
	2.6 Hardware Environment
	2.7 Proof-of-Concept / Subsystem Abstraction

	3 Design of a Generic Approach
	3.1 Functional Domain Nexus Interface Mk II
	3.2 Functional Domain: Creation of the Basic ‘Superhost’

	4 Discussion
	5 Future Work
	6 Conclusions
	References

	Mining Facebook Activity to Discover Social Ties: Towards a Social-Sensitive Ecosystem
	1 Introduction
	2 Related Work
	3 Tie Signs: The Facebook Case
	4 Tie Strength Inference
	4.1 Tie Strength Calculation
	4.2 Impact of Time and Relevance

	5 Experimental Evaluation
	5.1 Index Calculation
	5.2 Relevance and Gradual Forgetting

	6 Application Context
	7 Discussion
	References

	Secure Biometric-Based Authentication for Cloud Computing
	1 Introduction
	1.1 Problem Statement
	1.2 Organization

	2 Background
	2.1 Cloud Computing Models
	2.2 User Authentication
	2.3 Biometric-Based Authentication

	3 Technical Preliminaries
	3.1 Definition
	3.2 Homomorphic Cryptosystem
	3.3 Notations Used

	4 Proposed Solution
	4.1 Components
	4.2 Enrolment
	4.3 Verification

	5 Analysis
	5.1 Correctness Analysis
	5.2 Security Analysis
	5.3 Privacy Analysis
	5.4 Efficiency Analysis

	6 Discussion and Conclusions
	References

	An Efficient and Performance-Aware Big Data Storage System
	1 Introduction
	2 Related Work and Problem Analysis
	3 System Design
	3.1 Access Interface
	3.2 Identity and Access s Management Service
	3.3 Metadata Managem ment
	3.4 Metadata Management Service
	3.5 Object Data Management

	4 Implementation
	5 Experiments
	6 Conclusions
	References

	Towards Cost Aspects in Cloud Architectures
	1 Introduction
	2 Windows Azure and Its Pricing Model
	2.1 Core Concepts
	2.2 Standard Rates
	2.3 Special Quotas and Limits

	3 Scenario 1: Mass Data Store
	3.1 The Web Role Approach
	3.2 Queues at the Front-End
	3.3 Bulk Operations
	3.4 Direct Access to Cloud Storage
	3.5 Load Variations
	3.6 SQL Database Instead of Table/Blob Storage

	4 Scenario 2: Data Delivery
	4.1 The Web Role Approach
	4.2 Storage-Based Architecture

	5 Related Work
	6 Recommendations
	7 Conclusions
	References

	On-Demand Business Rule Management Framework for SaaS Application
	1 Introduction
	2 Related Work
	3 Background
	3.1 Business Rule Engine
	3.2 Decision Table

	4 Rule Engine Based Framework for SaaS Application
	4.1 Basic Units of the Framework
	4.2 Capability of the Framework
	4.3 Lifecycle of Business Rules in SaaS

	5 Case Study
	5.1 Motivation
	5.2 Representation of Business Rule
	5.3 Implementation
	5.4 Prototype Application

	6 Conclusions
	References

	Making XML Signatures Immune to XML Signature Wrapping Attacks
	1 Motivation and Introduction
	2 Foundations and RelatedWork
	2.1 XML Signature
	2.2 XML SignatureWrapping Attack
	2.3 Related Countermeasures

	3 The XSpRES Approach
	3.1 Architecture
	3.2 Client-Side Signature Generation Process
	3.3 Server-Side Signature Verification Process
	3.4 Backwards Compatibility and Standards Compliance

	4 Implementation and Evaluation
	5 Conclusions and Outlook
	References

	Automated Non-repudiable Cloud Resource Allocation
	1 Introduction
	2 Automated Negotiation and Monitoring
	2.1 Service Level Agreements
	2.2 Micro Agreements
	2.3 Service Monitoring

	3 ICRAS Architecture
	3.1 Consumer
	3.2 CSP
	3.3 ICRAS Agent

	4 ICRAS Protocol
	5 Prototype Implementation
	6 Related Works
	7 Discussion
	8 Conclusions
	References

	The IVI Cloud Computing Life Cycle
	1 Introduction
	2 Challenges with Managing Cloud Projects
	3 Defining the Life Cycle
	3.1 Design Medthdology
	3.2 The IT-Capability Maturity Framework

	4 The IVI Cloud L Life Cycle
	4.1 Phase 1: Architect
	4.2 Phase 2: Engage
	4.3 Phase 3: Operate
	4.4 Phase 4: Refresh

	5 The Life Cycle in Action
	5.1 Case Study: Mainstream Renewable Power

	6 Conclusions
	References

	Performance Assessment of Web Services in the STEP Framework
	1 Introduction
	2 STEP Framework Overview
	2.1 Architecture
	2.2 Request Processing

	3 Performance Tools
	3.1 Our Approach

	4 Experiments
	4.1 Scenario System
	4.2 Hardware and Software Platform
	4.3 Request Time Breakdown
	4.4 Monitor Implementation Comparison
	4.5 Request Types
	4.6 Web Service Message Size
	4.7 Hibernate Second-Level Cache
	4.8 Concurrent Users
	4.9 Logging Cost

	5 Conclusions
	References

	CAP-Oriented Design for Cloud-Native Applications
	1 Introduction
	2 Motivation
	3 CAP-Oriented Design
	3.1 Design Decisions and CAP Properties
	3.2 Application Design Methodology

	4 Architectural Decisions and Design Patterns
	4.1 Cloud Architecture Patterns
	4.2 Cloud Pattern Framework
	4.3 CAP-Oriented Cloud Pattern Framework

	5 Case Study
	6 Related Work
	7 Conclusions and Future Work
	References

	SLA-Oriented Security Provisioning for Cloud Computing
	1 Introduction
	2 An SLA-Oriented Security Perspective
	3 Intrusion Tolerance Techniques
	4 An Intrusion Tolerant Solution
	4.1 An example of Intrusion Tolerance Approach for Denial of Service Attacks toWeb Server

	5 mOSAIC: Development of Distributed Cloud Applications
	5.1 Programming with mOSAIC
	5.2 mOSAIC Offering for SLA-Based Applications

	6 SLA-Based Cloud Application for IT Management
	7 Offering Intrusion Tolerance through SLA
	8 Related Work
	9 Conclusions and Future Works
	References

	Cloud Storage and Bioinformatics in a Private Cloud Deployment: Lessons for Data Intensive Research
	1 Introduction
	2 Healthcare Cloud Storage
	2.1 Benefits from Adopting CCAF
	2.2 A Storage Area Network Made Up of Different Clusters of Network Attached Storage (NAS)

	3 Healthcare Cloud Storage Deployment Architecture and User Support
	3.1 Design and Deployment to Meet Challenges for Data Intensive Research
	3.2 Selections of Technology Solutions
	3.3 Deployment Architecture
	3.4 User Support

	4 Bioinformatics
	4.1 Tumour Modelling
	4.2 Medical Imaging
	4.3 Insulin Molecules
	4.4 Simulations for Medical Training

	5 Trials for Cloud Storage
	5.1 Backup Automation
	5.2 Data Recovery
	5.3 Data Migration of Single Large Files
	5.4 The Percentage of Failure Rates
	5.5 Summary of All Experiments

	6 Discussions
	6.1 Challenges for Data Intensive Research in Cloud
	6.2 User Feedback on Cloud Storage
	6.3 Plug and Play Features in Cloud Storage for Data Intensive Research
	6.4 Relative Performance
	6.5 The Proposal for “Healthcare Platform as a Service” (Hpaas) for Research and Education

	7 Conclusions
	References

	Author Index

